

Republic of the Philippines Department of Public Works and Highways

BSDS DESIGN STANDARD GUIDE MANUAL FEBRUARY 2019

Republic of the Philippines Department of Public Works and Highways

The DPWH Guide Specifications for BSDS Design Standard Guide Manual is prepared under the Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

PREFACE

The development of the DPWH BSDS Design Standard Guide Manual is part of Technology Transfer under the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Projects (MMPBSIP) with financial assistance from Japan International Cooperation Agency (JICA). The object of this manual is to supplement the application and understanding of the seismic design of bridges in accordance with the DPWH LRFD Bridge Seismic Design Specifications (BSDS 2013). The manual also includes a design example of bridge isolation design of a conventional bridge in accordance with the procedures of the Highway Bridge Seismic Isolation Design Specifications (1st Edition, 2019) manual which is issued separately.

The compilation of the contents of the manual is a collective effort of the members of the Technology Transfer Team of the Consultant and the Core Engineer Group (CEG) of the DPWH. The members of the teams are listed overleaf, whose contributions are highly appreciated.

It is recommended that the manual be used as reference and guide for the DPWH engineers in the seismic design of bridges under large-scale earthquake.

While it is believed the data in the examples are correct for the specific project example, the information and data presented herein does not indicate full applicability to other similar projects. The designer is held liable to the verification of the data of his/her own design works.

The computer software program used in the dynamic analysis of the examples does not constitute an endorsement of software product for the future design works.

Acknowledgment is given to the Japan International Cooperation Agency (JICA) for the support in the preparation of this manual.

The following team contributed to the development of this guide manual:

DPWH CORE ENGINEER GROUP (CEG) MEMBERS

	Name	Position	Organization
1.	Mr. Edwin C. Matanguihan	OIC Assistant Director	Bureau of Design, DPWH
2.	Ms. Blesilda S. Ramos	Bridge Chief	Bureau of Design, DPWH
3.	Mr. Mariano Flores	Engineer IV	Bureau of Design, DPWH
4.	Mr. Robert Jay Panaligan	Engineer III	Bureau of Design, DPWH
5.	Ms. Lara Marisse T. Inguito	Engineer III	Bureau of Design, DPWH
6.	Mr. Rodrigo de los Reyes	Project Manager III	Bridge Management Cluster- Unified Project Management Office, DPWH
7.	Mr. Nelson B. Villar	Project Manager I	Bridge Management Cluster- Unified Project Management Office, DPWH
8.	Mr. Norifel Teddie Cadiang	Engineer II	Bridge Management Cluster- Unified Project Management Office, DPWH

TECHNOLOGY TRANSFER TEAM MEMBERS

Name		Position	Organization
1.	Dr. Jovito C. Santos	Team Leader	Capacity Development Leader
2.	Dr. Masahiko Yasuda	Member	Seismic Design Specialist
3.	Mr. Naoto Mashiko	Member	Seismic Retrofitting Specialist
4.	Mr. Eiji Ochiai	Member	Seismic Retrofitting Specialist
5.	Dr. William Tanzo	Member	Seismic Hazard Specialist
6.	Dr. Takayuki Tsuchida	Member	Seismic Isolation Design Specialist
7.	Ms. Melodina Tuaño	Member	Seismic Design Specialist – 1
8.	Mr. Arwin Malabanan	Member	Seismic Design Specialist – 2

TABLE OF CONTENTS

		P	age		
Pr	Prefacei				
Dŀ	DPWH Core Engineer Group (CEG) Members ii				
Te	chnolog	y Transfer Team Members	. <i>ii</i>		
Ta	ble of C	Contents	iii		
Lis	st of Fig	ures	.ix		
Lis	st of Tak	oles	xii		
Ab	breviati	<i>con κ</i>	xiv		
_					
CH	НАРТЕ	R 1 GENERAL 1	-2		
1.1	App	licability 1	1-2		
1.2	2 Mai	n Scope of Manual	1-2		
1.3	B Defi	initions and Notations/Symbols (refer to BSDS, 2013)	-2		
СІ	ја ртг	D 2 CENEDAL CONSIDERATIONS FOR SEISMIC DESIGN 2			
2 1		an Philosophy)))		
2.1	Desi	ign r miosopny) 2		
2.2	$\frac{1}{2}$ Gen	eral Requirements 2)_5		
2.2	231	Bridge Operational Classification)_5		
	2.3.1	Earthquake Ground Motion and Saismic Performance of			
	2.3.2	Bridges) 6		
	222	Saismia Parformance of Bridges	ט-ג ז ר		
	2.3.3	Ground types (Site Class) for Seismic Design) 7		
	2.3.4	Values of Site Faster Faster Faster Deried Dange on	2-7		
	2.3.3	A acceleration Spectrum	0		
	226	Acceleration Spectrum	2-0		
	2.3.0	Despanse Medification Factors Substructures	2-9		
	2.3.7	Response Modification Factors – Substructures	2-9 10		
	2.3.8	Response Modification Factors – Substructures	10		
CF	ТАРТЕ	R 3 BASIC KNOWLEDGE OF EARTHOUAKE ENGINEERING			
		AND STRUCTURAL DYNAMICS	3-2		
3.1	Basi	ic Knowledge of Earthquake Engineering	3-2		
	3.1.1	General	3-2		
	3.1.2	Causes of Earthquake	3-2		
	3.1.3	Velocity and Transmission of Seismic Wave	3-4		
	3.1.4	Time History Wave and Spectrum of Earthquake	3-7		
	3.1.5	Intensity of Earthquakes (Magnitude, Seismic Intensity			
		Scale and Engineering Seismic Coefficient)	3-9		
3.2	2 Basi	ic Knowledge of Structural Dynamics 3-	13		
0.2	3.2.1	General 3-	13		
	3.2.2	Characteristic Vibration of Structure and Seismic Load	13		
	3.2.3	Material Non-linearity	14		
	3.2.4	Static Design and Dynamic Design Methods	17		
	3.2.5	Load Factor Design (LFD) and Load and Resistance	÷ '		
	2.2.0	Factor Design (LRFD)	19		

CE	IAPTEI	R 4 ANALYSIS METHOD	4-2
4.1	Simp	lified Method	4-2
	4.1.1	Uniform Load Method	4-2
	4.1.2	Single Mode Spectral Method	4-4
4.2	Linea	ar Analysis	4-6
	4.2.1	Model Analysis	4-6
	4.2.2	Response Spectrum method	4-7
	4.2.3	Time History Direct Integration Analysis	4-7
4.3	Inelas	stic Time History Analysis	4-8
	4.3.1	Analysis Method	4-9
	4.3.2	Hysteresis Model	4-11
	4.3.3	Plastic Hinges	4-21
	4.3.4	Multiple Support Excitation	4-22
CH	IAPTEL	K 5 ANALYSIS EXAMPLE	5-2
5.1	Anal	lysis Modelling	5-2
	5.1.1	Structural Conditions	5-2
	5.1.2	Bridge Importance (Bridge Operational Classification)	
	- 1 0	(BSDS-Article 3.2)	5-3
	5.1.3	Material Properties	5-5
	5.1.4	Ground Conditions (BSDS-Article 3.5.1)	5-5
5.2	Resp	bonse Spectrum Analysis	5-7
	5.2.1	Design Acceleration Response Spectra	5-7
	5.2.2	Analysis Requirements and Physical Modeling	5-9
	5.2.3	Analysis Loading Model	5-20
5.3	Mod	lal Analysis	5-22
	5.3.1	Multimode Spectral Analysis	5-22
	5.3.2	Bridge Response	5-27
5.4	Elast	tic Time History (Direct Integration) Analysis	5-27
	5.4.1	Time History ground motions	5-28
CF	IAPTEI	R 6 SEISMIC DESIGN OF PIER	6-2
6.1	Flow	vchart	6-2
6.2	Gene	eral Design Conditions & Criteria	6-4
	6.2.1	Bridge General Elevation & Cross section	6-4
	6.2.2	Pier Geometry and Location Map.	6-5
	6.2.3	Structural Conditions	6-6
	6.2.4	Seismic Design Requirements and Ground Conditions	6-6
	6.2.5	Site Factors	6-6
	6.2.6	Borelogs (not to scale)	6-8
	627	Hydrology and Hydraulics Data	6-9
	6.2.8	Design Loads	6-9
	6.2.9	Material and Soil Property	6-9
63	Load	1 Calculations	6-10
5.5	631	Seismic Loads	6-10
	632	Permanent Loads	6-11
	633	Vehicular Loads	6-11
	634	Stream flow WA	6_12
	0.5.4	545411 116 W, 112 1	0-12

6	.3.5	Tu, Shrinkage & Creep, Settlement	6-13
6	.3.6	Summary of unfactored loads	6-14
6	.3.7	Load modifiers and factors	6-14
6	.3.8	Summary of factored and load combinations	6-15
6	.3.9	Verification of slenderness effect	6-16
6.4	Verif	ication of Column Flexural Resistance and Displacement	6-16
6	.4.1	Verification of column resistance	6-16
6	.4.2	Verification of column displacement	6-18
6.5	Verif	ication of Column Shear Resistance	6-19
6.6	Verif	ication of Pile Cap Resistance	6-22
6	.6.1	Calculate the inelastic hinging forces:	6-22
6	.6.2	Verification of flexure resistance	6-25
6	.6.3	Verification of shear resistance	6-27
6	.6.4	Shrinkage and temperature reinforcement	6-31
6	.6.5	Verification of two-way shear action (punching shear)	
		for pile	6-32
6	.6.6	Verification of two-way shear action (punching shear) for	
		column	6-32
6	.6.7	Pile cap Details	6-33
6.7	Pile S	Stability and Structural Resistance	6-33
6	.7.1	Determine the design forces of footing from Section 6.6	
		Design of Pile Cap	
6	.7.2	Determine pile springs and geometric properties	
6	.7.3	Determine displacement and reaction force	
6	.7.4	Verification of pile stability	
6	.7.5	Verification of pile structural resistance	
6	./.6	Pile Details	
СПА	ртгі	7 - Solomia Dagian of Abutmant	7 2
CHA	FICU	vhart	<i>1-4</i> 7 2
7.1 7.2	Gona	rel Design Conditions & Criteria	
7.2	2 1	Bridge General Elevation & Location Man	
7	.2.1 つつ	Structural Conditions	
7	.2.2 23	Solutional Conditions	
7	.2.5	Site Factors	
7	25	Borelogs (not to scale)	
7	2.5	Hydrology and Hydraulics Data	7_8
7	2.0	Design Loads	7-8
7	2.7	Material and Soil Property	7-8
73	Geon	netry and Load Calculations	7-8
7	.3.1	Geometry of Abutment	
7	3.2	Diagram of forces acting to Abutment	7-9
7	33	Load modifiers factors and combinations	7-14
7.4	Desig	n of Backwall	
7	.4.1	Determine the applicable loads calculated from section 7.3 Geometry	
		and Load Calculations	
7	.4.2	Determine the load combinations with applied load modifiers and	
		load factors	
7	.4.3	Determine the governing design forces:	
1			

7.4	4.4 Verification of flexural resistance	. 7-19
7.4	4.5 Verification of shear resistance	. 7-20
7.4	4.6 Verification of interface shear resistance	. 7-21
7.4	4.7 Verification of shrinkage and temperature reinforcement	. 7-22
7.4	4.8 Development of reinforcement	. 7-22
7.4	4.9 Backwall details	. 7-23
7.5 I	Design of Breast Wall	. 7-23
7.	5.1 Determine the applicable loads calculated from section 7.3 Geometry	
	and Load Calculations	. 7-23
7.	5.2 Determine the load combinations with applied load modifiers and	
	load factors.	. 7-24
7.	2.3 Determine the governing design forces:	.7-26
7.5	5.4 Verification of flexural resistance	.7-27
7.5	5.5 Verification of shear resistance	.7-28
7.5	5.6 Verification of interface shear resistance	.7-29
7.5	5.7 Verification of shrinkage and temperature reinforcement	.7-30
7.	5.8 Development of reinforcement	7-31
7.	5.9 Verification of demand forces for unseating prevention device for	. , 01
,	hackwall	7-31
7 -	5 10 Breast wall details	7-32
76 1	Design of Wing Walls	7-32
7.0	6.1 Diagram of forces acting to wing wall	7-33
7.0	6.2 Determine the applicable loads acting to each part (part "A", "B" and "C")	
,	as shown in the shape of wing wall (a)	7-33
7 (63 Design Part "A"	7-35
7.	64 Design Part "B"	7-42
7.	6.5 Design Part "C"	7-44
7.	6.6 Wing wall details	7-45
,. 77 I	Design of Pile Can	7-45
7.7 I	7.1 Determine the applicable loads calculated from section 7.3 Geometry	. / 43
/.	and Load Calculations	7-45
7 '	7.2 Determine the load combinations with applied load modifiers and	. / 15
<i>,</i> .	load factors	7-46
7 '	7.3 Determine the governing design forces	7-49
7. 7.	7.4 Verification of flexural resistance	7-50
7	7.5 Verification of shear resistance	7-55
7	7.6 Verification of shrinkage and temperature reinforcement	7-57
7.	7.7 Pile can details	7-57
781	Design of Piles	7-58
7.0	8.1 Determine the nile springs and geometric properties	7-58
7 :	8.2 Determine the pile springs and geometric properties	7-58
7 :	8.3 Determine the pile displacement and reaction force	7-62
7 :	8.4 Verification of Pile stability	7-66
7 :	8.5 Verification of Pile structural resistance	7-69
7 :	8.6 Pile Details	7-72
7.0		. , , 2
CHAI	PTER 8 UNSEATING PREVENTION SYSTEMS	8-2
8.1	Seat Length	8-5
8.2	Unseating Prevention Devices (Longitudinal)	8-5
0.4	onsouring recontion Devices (Longitudilla)	0-5

8.3	Uns	eating Devices (Transverse)	8-16
8.4	Sett	ling Prevention Devices	
СЦ	артғ	D 0 DESIGN FY AMDI E OF SEISMIC 1901 ATED DDDOF	
СП		WITH HIGH DAMPING LAMINATED RUBBER	
		BEARING (HDR)	9-2
9.1	Proc	edure	
9.2	Desi	gn Condition of Example Bridge and Seismic Hazard	
	9.2.1	Description	
	9.2.2	Seismic hazard	
	9.2.3	Required performance of Isolated Bridge	
9.3	Ana	lysis	
	9.3.1	Global Analysis Model	
	9.3.2	Bearings (HDR)	
	9.3.4	Mechanical Properties of HDR	
	9.3.5	Dynamic Characteristics of HDR	
	9.3.6	Analysis Method	
	9.3.7	Practical Modeling and Analysis	
9.4	Desi	gn Seismic Forces for Verification of Bearing Support	
	9.4.1	Design Seismic force for verification of bearing support	
	9.4.2	Verification of Analysis Output	
9.5	Dest	gn of High-Damping Rubber Bearing	
	9.5.1	Design of Pier Bearing	
	9.5.2	Design of Abutment Bearing	
9.6	Veri	fication of Bridge Response and Hysteresis of HDR Bearing	
	9.6.1	Hysteresis Curve of HDR	
	9.6.2	Displacement History of superstructure and Pier	
	9.6.3	Verification of Pier Response	
	9.6.4	Column Requirements	
	9.6.5	Verification of the bearing reaction force to the abutment	
9.7	Con	clusion	
	Rem	arks:	
	Lim	itation:	
	Refe	prences:	
CH	IAPTE	R 10 COMPARISON BETWEEN SEISMIC RESISTANCE	10.2
10	1 6-3	DEDIGIN AND DEIDIVIC IDULATION DEDIGN	10-2
10.	1 Sel	magnic Resistant Design and Seismic Isolated Design	
10.	$\frac{2}{1021}$	Pridge A polygic Model	
	10.2.1	A nelvoie	
10	10.2.2	Analysis	
10.	$5 \ 1021$	Comparison of Fundamental Devices of Devides	10-3
	10.3.1	Comparison of Fundamental Periods of Bridge	
	10.3.2	Comparison of Top of Pior Displacement	10-5 10-5
	10.3.3	Comparison of Forces at Pier	
10	10.3.4 1 Co	nclusion	10-/ 10 0
10.	τ C0 Ρο	ferences.	10-0 10.0
	Re		

CHAPTER 11 GAP BEARING ADJACENT GIRD	ERS AND
SUBSTRUCTURE	
11.1 Gap between adjacent girder and Substructures	
CHAPTER 12 EXAMINATION OF LIQUEFACT	ION 12-2
12.1 Liquefaction	
12.1.1 Assessment of seismically unstable soil laye	er12-2
12.1.2 Assessment of Liquefaction	
12.1.3 Calculation Example	
12.2 Lateral spreading	
APPENDIX: STRUCTURAL DETAILS	
A1. Plastic Hinge Part	
A2. Anchorage of Hoops	
A3. Standard Reinforcement at the Joint of Column a	nd BeamA-4

_

LIST OF FIGURES

		Page
Figure	2.2-1 Seismic Design Procedure Flow Chart	2-3
Figure	2.2-2 Seismic Detailing and Foundation Design Flow Chart	
Figure	2.2-3 Design Response Spectrum	2-9
Figure	3.1-1 Example of Seismic Wave in Different Directions	3-5
Figure	3.1-2 Example of Seismic Wave Transmission to Different Locations	3-6
Figure	3.1-3 Procedure of Transformation of Response Spectrum from	27
Elemen	2.1.4 Example of Time History Earth such Wave and	
Figure	A conformation Designment Supertrum	2.0
Element	2 1 5 Deference Detweer Magnitude and Internetty	
Figure	2.2.1 Example of Normal Modes of Deam	
Figure	3.2-1 Example of Normal Modes of Cantilever	
Figure	3.2-2 Example of Normal Wodes of Califiever	
Figure	3.2-3 Example of Superposition Relation in Linear Property	
Figure	3.2-4 Ideal Stress-Strain Relation of Reinforcing Bar	
Figure	3.2-5 Ideal Stress-Strain Relation of Concrete	
Figure	3.2-6 Non-Linear Behavior of Reinforced Concrete Pier	
Figure	3.2-7 Example of Historical Curve of The Bending	0.1.6
	Moment-Curvature at Pier Bottom.	
Figure	4.3-1 Takeda Hysteresis Model – Ref: Hysteresis Models of	
	Reinforced Concrete for Earthquake Response	
	Analysis by Otani [May 1981]	
Figure	4.3-2 Idealized Stress–Strain Curves of Concrete in Uniaxial	
	Compression.	
Figure	4.3-3 Stress-Strain Curves of Concrete-Mander Model	
Figure	4.3-4 Confined Core for Hoop Reinforcement	
Figure	4.3-5 Peak Stress of Confined Concrete (Chen Et. Al 2014)	4-18
Figure	4.3-6 Confined Core for Rectangular Hoop Reinforcement (Chen Et.Al 2014)	4-19
Figure	4.3-7 Idealized Stress-Strain Curve of Structural Steel and	
U	Reinforcement. (Chen El Al. 2014)	
Figure	4.3-8 Idealization of Curvature Distribution – [Ref: Priestly, M.J.N.	
0	Calvi G.M. Kowalsky M.J. (2007)]	
Figure	4.3-9 Definition of Superstructure and Support Dofs. (Chopra 2012)	4-23
Figure	5-1 Outline of Analysis	5-2
Figure	5.1-1 Bridge Profile and Superstructure Cross Section	5-3
Figure	5.1-2 Geological Profile and Soil Parameters	
Figure	5.1-3 Soil Type Classification	
Figure	5.2-1 Acceleration Contour Maps	5-7
Figure	5.2-2 Site Factors	
Figure	5.2-3 Design Acceleration Response Spectrum for The Design	
Figure	5.2-4 Application Point of Superstructure Mass	
Figure	5.2-5 A) Convert Self-Weight to Mass B) Convert Other Types of	
- 19410	Deadload To Mass	5-11
Figure	5.2-6 Degrees of Freedom of Bearings	
Figure	5.2-7 A) Movable Bearing B) Fixed Bearing	
0	, , , , , , , , , , , , , , , , , , , ,	

Figure	5.2-8 Image of Cracked Section Stiffness of Piers/Columns	5-12
Figure	5.2-9 A) Stiffness Factor B) Uncracked Section	
	Properties C) Cracked Section Properties	5-13
Figure	5.2-10 Dynamic Spring Property of Pile Foundation	
	A) Discrete Pile Model B) Lumped Spring Model	5-14
Figure	5.2-11 Determination Process of Dynamic Spring	
	Property of Pile Foundation	5-17
Figure	5.2-12 Piles Foundation Plan	5-18
Figure	5.2-13 Soil Spring Stiffness Input in Midas Civil	5-19
Figure	5.2-14 Dynamic Analysis Model of Example Bridge	
	in Midas Civil	5-20
Figure	5.2-15 50% of Live Load Effect Converted into	
	Equivalent Masses	5-21
Figure	5.2-16 Design Acceleration Response Spectrum	5-22
Figure	5.3-1 Modal Combination Using Midas	5-23
Figure	5.3-2 Mass Participation	5-25
Figure	5.3-3 Eigenvalue Analysis Option	5-25
Figure	5.3-4 Natural Period of Bridge	
Figure	5.4-1 Time History Analysis Methods	5-28
Figure	5.4-2 Seven Pairs of Spectrally Matched Acceleration Time History	5-29
Figure	5.4-3 Load Cases Definition	5-29
Figure	5.4-4 Example Input Ground Motion	5-30
Figure	5.4-5 Excitation Angle of Earthquake Based on the Nearest Source	5-30
Figure	5.4-6 Damping Coefficient Calculation using Midas Civil	5-31
Figure	5.4-7 A) Moment (My) Response of Pier Bottom Due to Eq1	
Figure	5.4-8 B) Pier Top Displacement Response Due to Eq1	5-33
Figure	6.1-1 Flowchart	
Figure	6.1-2 Flowchart B	6-3
Figure	6.2-1 Bridge General Elevation & Cross Section	6-4
Figure	6.2-2 Pier Geometry and Location Map	6-5
Figure	6.2-3 Site Factors	6-7
Figure	6.2-4 Bore Logs of Pier 1 And Abutment B	6-8
Figure	7.1-1 Flow Chart	
Figure	7.1-2 Flow Chart (B)	
Figure	7.2-1 Bridge General Elevation	
Figure	7.2-2 Location Map	
Figure	7.2-3 Site Factors	
Figure	7.2-4 Borelogs Of Pier and Abut B	
Figure	8-1 Example Bridge (A)	
Figure	8-2 Example Bridge (B)	
Figure	8-3 Example Bridge (C)	
Figure	8.1-1 (A) Girder End Support	
Figure	8.1-2 (B) Intermediate Joint	
Figure	9.1-1 Seismic Isolation Design General Procedure	
Figure	9.2-1 General Elevation of Sample Bridge	
Figure	9.2-2 Seven Sets of Site-Specific Acceleration	
	Time History Ground Motions	

Figure	9.2-3 Permissible Plastic Hinge Location for Seismic	
	Isolated Bridge	
Figure	9.3-1 3d Bridge Mathematical Model	
Figure	9.3-2 Piles Foundation Plan	
Figure	9.3-3 Soil Spring Stiffness Input in Midas Civil	
Figure	9.3-4 High Damping Laminated Rubber Bearing (Hdr)	
Figure	9.3-5 Modified Design Response Spectrum for Isolated	
	Bridge (Chen Et Al. 2014)	
Figure	9.3-6 Billinear Hysteresis Loop (Aashto 1999)	
Figure	9.3-7 Force-Deformation Relationship Due To	
	Hysteretic Behavior ($R = 0$, $K = Fy = S = 1.0$)	
Figure	9.3-8 Transition Region Between Elastic And	
	Plastic Deformations (Yield Region)	
Figure	9.3-9 Example Bridge Mathematical Model	
Figure	9.3-10 Sample Bearing Input Parameters for Hysteretic System	
Figure	9.4-1 Vertical Reaction Force Rheq Generated in Bearing Support	
	Due to Horizontal Seismic Force & Vertical Reaction Force	
	Rveq Generated in Bearing Support Due To Vertical	
	Seismic Force	
Figure	9.4-2 Fundamental Modes of Bridge	
Figure	9.6-1 Hysteresis Curve of Hdr Bearing (B9)	
Figure	9.6-2 Time History for Superstructure Displacement	
Figure	9.6-3 Sample History of Pier-Top Displacement Due to Eq1x	
Figure	9.6-4 Abutment Design	
Figure	9.6-5 Interaction Curve of Required Column	
Figure	10.2-1 Degrees of Freedom of Bearing	10-2
Figure	10.3-1 Fundamental Period of Conventional Model Bridge	10-4
Figure	10.3-2 Displacement History of Superstructure of Two Different Model	10-5
Figure	10.3-3 Displacement History of Pier Top of Two Different Model	10-6
Figure	10.3-4 Interaction Diagram of Required Column	
	Section for Conventional Bridge	10-8
Figure	12.2-1 Example Bridge	12-8
Figure	12.2-2 Borehole Log	12-9
Figure	12.2-3 Analysis Model	12-10
Figure	12.2-4 Lateral Spreading Force Applying to Pier	12-11

LIST OF TABLES

		Page
Table	2.3-1 Operational Classification of Bridges	
Table	2.3-2 Earthquake Ground Motion and Seismic Performance of Bridges	
Table	2.3-3 Seismic Performance of Bridges	
Table	2.3-4 Ground Types (Site Class) For Seismic Design	
Table	2.3-5 Values of Site Factor, Fpga, At Zero-Period	
	on Acceleration Spectrum	
Table	2.3-6 Values of Site Factor, Fa, For Short-Period Range	
	on Acceleration Spectrum	
Table	2.3-7 Values of Site Factor, Fv, For Long-Period Range	
	on Acceleration Spectrum	
Table	2.3-8 Seismic Performance Zones (Spz)	
Table	2.3-9 Response Modification Factors – Substructures	
Table	2.3-10 Response Modification Factors – Connections	
Table	3.1-1 Types of Earthquake	
Table	3.1-2 Kinds of Seismic Wave Transmission	
Table	3.1-3 PHIVOLCS Earthquake Intensity Scale (Peis)	
Table	3.1-4 Comparison of Seismic Intensity for Bridge Design	
Table	3.2-1 Major Dynamic Analysis Methods for Bridge Seismic	
Table	3.2-2 Comparison of Asd, Lfd And Lrfd	
Table	4.1-1 Division Number 105/36=2.9m	
Table	4.3-1 Newmark's Method: Non-Linear System (Chopra 2012)	4-11
Table	4.3-2 Parameter A And Parameters A, B, C, And D For the use of	
	Equation (4.11) for Various Hysteretic Models According to	
	Priestley Et. Al, 2007	4-15
Table	4.3-3 Nominal Limiting Values for Structural Steel	
	Stress-Strain Curves (Chen Et. Al 2014)	
Table	5.1-1 Operational Classification of Bridges	5-4
Table	5.1-2 Response Modification Factors, R	5-4
Table	5.1-3 Earthquake Ground Motion and Seismic Performance	5-4
Table	5.1-4 Material Properties	5-5
Table	5.1-5 Ground Types (Site Class) For Seismic Design	5-6
Table	5.2-1 Seismic Performance Zone	5-9
Table	5.2-2 Regular Bridge Requirements	5-10
Table	5.2-3 Minimum Analysis Requirements for Seismic Effects	5-10
Table	5.3-1 Pier Bottom Force Response	5-27
Table	5.4-1 Force Response	5-32
Table	5.4-2 Design Displacement at Pier Top	5-33
Table	7.2-1 Seismic Design Requirements and Ground Conditions	
Table	9.3-1 Allowable Value of Rubber Material	
Table	9.3-2 Characteristics of High Damping Rubber (G8)	
	Bearing (Initial Input Value)	
Table	9.6-1 Pier Displacement Response	
Table	9.6-2 Pier Design Forces	
Table	9.6-3 Bearing Design Summary	

Table	10.3-1 Fundamental Period of Bridges Model	10-4
Table	10.3-2 Design Displacement of Superstructure	10-5
Table	10.3-3 Design Displacement at Top of Pier	10-6
Table	10.3-4 Comparison of Design Forces at Column Base	10-7
Table	10.3-5 Modified Design Forces at Column Base	10-7
Table	10.4-1 Comparison Table of Conventional and Seismic Isolated Bridge	10-8
Table	11-1 Joint Gap Width Modification Factor for Natural Period	
	Difference Between	
Table	12.1-1 Assessment of Soil Layer	12-2
Table	12.1-2 Assessment of Liquefaction Potential	12-5
Table	12.1-3 Calculation of Fl	
Table	12.1-4 Reduction Factor De For Soil Parameters	
Table	12.2-1 Geological Constants	12-9
Table	12.2-2 Calculation of Lateral Spreading Force Applying to Pier	

ABBREVIATION

AASHTO	American Association of State Highway and Transportation Officials
ASD	Allowable Stress Design
BSDS	Bridge Seismic Design Specification
CQC	Complete Quadratic Combination
DGCS	Design Guidelines, Criteria and Standards
DPWH	Department of Public Works and Highways
EGM	Earthquake Ground Motion
FLS	Fatigue Limit Scale
ITHA	Inelastic Time History Analysis
LFD	Load Factor Design
LRFD	Load and Resistance Factor Design
LSD	Limit State Design
MDOF	Multi Degree of Freedom
MM	Multimode Method
OC	Operational Class
PEIS	PHIVOLCS Earthquake Intensity Scale
PGA	Peak Ground Acceleration
PHIVOLCS	Philippine Institute of Volcanology and Seismology
SDOF	Single Degree of Freedom
SLS	Serviceability Limit State
SM	Single-mode Method
SPL	Seismic Performance Level
SPZ	Seismic Performance Zones
SRSS	Square Root of the Sum of the Square
ULM	Uniform Load Method
ULS	Ultimate Limit State
WSD	Working Stress Design

CHAPTER 1: GENERAL

Chapter 1 General

1.1 Applicability

- (1) This manual (BSDS *STANDARD DESIGN GUIDE MANUAL*) was prepared to provide guidelines to DPWH engineers in the seismic design and constructions of conventional new bridges under design large earthquake as an extreme event.
- (2) The manual will serve as reference for the proper use and application of the principles of BSDS 2013 and its Interim Revision February 2019.
- (3) The manual provides examples of seismic analysis of a particular bridge to assist in the understanding of site specific and other application of BSDS.
- (4) The manual also provides comprehensive example of structural design of pier and abutment in compliance to the provisions of DGCS, 2015 or AASHTO LRFD.
- (5) While it is believed the sample calculations given in the manual are well thought it is the responsibility of the designer to perform specific engineering study for the specific project.

1.2 Main Scope of Manual

- (1) Analysis method (Simplified, Linear and Non-Linear analysis)
- (2) Analysis Example
- (3) Seismic Design of Pier and Abutment
- (4) Calculation of Unseating Prevention Device
- (5) Gap Bearings Adjacent Girders and Substructure
- (6) Calculation of Liquefaction

1.3 Definitions and Notations/Symbols

Refer to the BSDS 2013, for definitions, notations and symbols.

CHAPTER 2: GENERAL CONSIDERATIONS FOR SEISMIC DESIGN

Chapter 2 General Considerations for Seismic Design

2.1 Design Philosophy

٠

- Bridges play a major role as evacuation and emergency routes during a major disaster such as an earthquake. Therefore, it is necessary the bridges shall be designed to ensure the seismic performance by the Operational Class (OC) and the required Level of the design Earthquake Ground Motion (EGM) corresponding to an earthquake with return period event of 1000 years (7% probability of exceedance in 75 years) for life safety performance objective under the large earthquake.
- The design of bridges shall comply with minimum concepts specified in the DPWH D.O. No. 75 "DPWH Advisory for Seismic Design of Bridges", 1992 as follows:
 - 1. Continuous bridges with monolithic multi-column bents have high degree of redundancy are recommended. Expansion joints and hinges should be kept to minimum.
 - 2. Decks should be made continuous if bridge is multi-span simple span.
 - 3. Restrainers or unseating device are required to all joints. Generous seat length should be provided to piers and abutments to prevent from loss of span.
 - 4. Transverse reinforcements in the zones of yielding are essential to confine the longitudinal bars and the concrete within the core of column.
 - 5. Plastic hinging should be forced to occur in the ductile column regions of the pier rather than the foundation.
 - 6. The stiffness of the bridge as a whole should be considered in the analysis including the soil-structure interaction.
 - The following shall be taken into account in the design of bridges:
 - 1. Topographical, geological, geotechnical soil and other site conditions that may affect the seismic performance of the bridge.
 - 2. Selection of appropriate structural system with high seismic performance that is capable of fully resisting the earthquake forces utilizing the strength and ductility of the structural members.
- The following two levels of EGM shall be considered in the BSDS:
 - 1. Level 1 EGM, considering seismic hazard from small to moderate earthquake with high probability of occurrence during the bridge service life (100-year return period), for seismic serviceability design objective to ensure normal bridge functions.

2. Level 2 EGM, considering a seismic hazard corresponding to an earthquake with return period event of 1,000 years (7% probability of exceedance in 75 years) for life safety performance objective under the large earthquake.

2.2 Flowcharts

Note: The Articles shall be referred to BSDS 2013 (1st Edition)

Figure 2.2-1 Seismic Design Procedure Flow Chart

Figure 2.2-2 Seismic Detailing and Foundation Design Flow Chart

2.3 General Requirements

2.3.1 Bridge Operational Classification

(1) For the purpose of seismic design, bridges shall be classified into one of the following three operational categories:

Operational Classification (OC)	Serviceability Performance	Description
OC-I (Critical Bridges)	 Bridges that must remain open to all traffic after the Level 2 design earthquake, i.e. 1,000-year return period event. Other bridges required by DPWH to be open to emergency vehicles and vehicles for security/defense purposes immediately after an earthquake larger than the Level 2 design earthquake (AASHTO recommends a 2,500- year return for larger earthquakes). 	 Important bridges that meet any of the following criteria: Bridges that do not have detours or alternative bridge route (e.g. bridges that connect islands where no other alternative bridge exist), Bridges on roads and highways considered to be part of the regional disaster prevention route, Bridges with span ≥ 100m, Non-conventional bridges or special bridge types such as suspension, cable stayed, arch, etc. Other bridge forms such as double-deck bridges, overcrossings or overbridges that could cause secondary disaster on important bridges/structures when collapsed, As specified by the DPWH or those having jurisdiction on the bridge.
OC-II (Essential Bridges)	• Bridges that should, as a minimum, be open to emergency vehicles and for security/defense purposes within a short period after the Level 2 design earthquake, i.e. 1,000-year return period event.	 Bridges located along the following roads/highways: Pan-Philippine Highway, Expressways (Urban and Inter-urban expressways), Major/Primary national arterial highways (North-South Backbone, East-West Lateral, Other Roads of Strategic Importance), Provincial, City and Municipal roads in view of disaster prevention and traffic strategy. Additionally, bridges that meet any of the following criteria:

Table 2.3-1 Operational Classification of Bridges

		 Bridges with detours greater than 25 kilometers As specified by the DPWH or those having jurisdiction on the bridge
OC-III	• All other bridges not required to satisfy OC-I	• All other bridges not classified as OC-I or OC-II
(Other Bridges)	or OC-II performance.	

The DPWH or those having jurisdiction shall classify the bridge into one of the above three operational categories.

(2) The basis of classification shall include social/survival and security/defense requirements. In classifying a bridge, considerations should be given to possible future changes in conditions and requirements.

2.3.2 Earthquake Ground Motion and Seismic Performance of Bridges

Table	2.3-2	Earthou	ake Grou	nd Motio	n and Seis	smic Perfor	mance of Bridges
Table	2.3-2	Laiuqu	and Orou	nu wiono	n and Bels		mance of Dringes

Foutbaughe Crownd	Bridge Operational Classification				
Earthquake Ground Motion (EGM)	OC-I (Critical Bridges)	OC-II (Essential Bridges)	OC-III (Other Bridges)		
Level 1 (Small to moderate earthquakes which are highly probable during the bridge service life, 100-year return)	SPL-1 (Keep the bridge sound function; resist seismic forces within elastic limit)	SPL-1 (Keep the bridge sound function; resist seismic forces within elastic limit)	SPL-1 (Keep the bridge sound function; resist seismic forces within elastic limit)		
Level 2 (Large earthquakes with a 1,000-year return period)	SPL-2 (Limited seismic damage and capable of immediately recovering bridge functions without structural repair)	SPL-2 (Limited seismic damage and capable of recovering bridge function with structural repair within short period)	SPL-3 (May suffer damage but should not cause collapse of bridge or any of its structural elements)		

2.3.3 Seismic Performance of Bridges

	Saiamia Safata	Seismic	Seismic Repair	ability Design
Seismic Performance	Design	Serviceability Design	Emergency Repairability	Permanent Repairability
Seismic Performance Level 1 (SPL-1): <i>Keeping the sound</i> <i>function of bridges</i>	Ensure safety against girder unseating; resist earthquake within elastic range	Ensure normal bridge functions	No repair work is needed to recover bridge functions	Only easy and minor repair works are needed
Seismic Performance Level 2 (SPL-2): <i>Limited damages and</i> <i>recovery</i>	Ensure safety against collapse and girder unseating	Capable of recovering functions within a short period after the earthquake event	Capable of recovering functions by emergency repair works	Capable of easily undertaking permanent repair work
Seismic Performance Level 3 (SPL-3): <i>No critical damages</i>	Ensure safety against collapse and girder unseating	-	-	-

Table 2.3-3 Seismic Performance of Bridges

2.3.4 Ground types (Site Class) for Seismic Design

Table 2.3-4 Ground	Types (Site C	Class) for Seismi	c Design
--------------------	---------------	-------------------	----------

Ground Type*	Soil Profile Description	Characteristic Value of Ground, T _G (s)
Type I	Hard (Good diluvial ground and rock)	$T_G < 0.2$
Туре II	Medium (Diluvial and alluvial ground not belonging to Types I and III)	$0.2 \le T_G < 0.6$
Type III	Soft (Soft ground and alluvial ground)	$0.6 \leq T_G$

* The Ground Type shall be determined quantitatively based on the Characteristic Value of Ground (T_G) .

where:

T_G	:	Characteristic value of ground (s)	
H_i	:	Thickness of the <i>i</i> -th soil layer (m)	
V_{si}	:	Average shear elastic wave velocity of the	<i>i-th</i> soil layer (m/s)

i : Numbers of the *i*-th soli layer from the ground surface when the ground is classified into *n* layers from the ground.

2.3.5 Values of Site Factor, F_{pga} , F_a , and F_v on Acceleration Spectrum

Ground	Spectral Acceleration Coefficient at Period 0.2 sec $(S_S)^1$							
Class)	$PGA \leq 0.10$	PGA = 0.20	$PGA_S = 0.30$	PGA = 0.40	PGA = 0.50	$PGA \ge 0.80$		
Ι	1.2	1.2	1.1	1.0	1.0	1.0		
II	1.6	1.4	1.2	1.0	0.9	0.85		
III	2.5	1.7	1.2	0.9	0.8	0.75		

Table 2.3-5Values of Site Factor, F_{pga} , at Zero-Period on Acceleration Spectrum

Note:

¹Use straight-line interpolation for intermediate values of *PGA*.

Table 2 3-6 V	Volues of Site	Factor F	for Short-E	Pariod Range of	n Acceleration	Snoetrum
1 able 2.3-0	values of Site	$\Gamma a C (01, \Gamma_a,$	101 511011-1	erioù Kalige u	II Acceleration	Speci um

Ground	Spectral Acceleration Coefficient at Period 0.2 sec $(S_S)^1$					
Class)	$S_S \leq 0.25$	$S_{S} = 0.50$	$S_{S} = 0.75$	$S_{S} = 1.00$	$S_{S} = 1.25$	$S_S \ge 2.0$
Ι	1.2	1.2	1.1	1.0	1.0	1.0
II	1.6	1.4	1.2	1.0	0.9	0.85
III	2.5	1.7	1.2	0.9	0.8	0.75

Note:

¹Use straight-line interpolation for intermediate values of S_S .

Table 2.3-7 Values of Site Factor, F_v, for Long-Period Range on Acceleration Spectrum

Ground	Spectral Acceleration Coefficient at Period 1.0 sec $(S_I)^1$					
Class)	$S_1 \le 0.10$	<i>S</i> ₁ = 0.20	<i>S</i> ₁ = 0.30	<i>S</i> ₁ = 0.40	$S_1 = 0.50$	$S_1 \ge 0.80$
Ι	1.7	1.6	1.5	1.4	1.4	1.4
II	2.4	2.0	1.8	1.6	1.5	1.5
III	3.5	3.2	2.8	2.4	2.4	2.0

Note:

¹Use straight-line interpolation for intermediate values of S_1 .

2.3.6 Design Response Spectrum

Figure 2.2-3 Design Response Spectrum

2.3.7 Seismic Performance Zones (SPZ)

Acceleration Coefficient, S _{D1}	Seismic Performance Zone
$S_{DI} \leq 0.15$	1
$0.15 < S_{DI} \le 0.30$	2
$0.30 < S_{D1} \le 0.50$	3
$0.50 < S_{D1}$	4

Table 2.3-8 Seismic Performance Zones (SPZ)

2.3.8 Response Modification Factors – Substructures

	Operational Category			
Substructure	OC-I (Critical)	OC-II (Essential)	OC-III (Others)	
Wall-type piers – larger dimension	1.5	1.5	2.0	
Reinforced concrete pile bentsVertical piles onlyWith batter piles	1.5 1.5	2.0 1.5	3.0 2.0	
Single columns	1.5	2.0	3.0	
Steel or composite steel and concrete pile bentsVertical piles onlyWith batter piles	1.5 1.5	3.5 2.0	5.0 3.0	
Multiple column bents	1.5	3.5	5.0	

Table 2.3-9 Response Modification Factors – Substructures

 Table 2.3-10 Response Modification Factors – Connections

Connection	All Operational Categories		
Superstructure to abutment	0.8		
Expansion joints within a span of the superstructure	0.8		
Columns, piers, or pile bents to cap beams or superstructure	1.0		
Columns or piers to foundations	1.0		

CHAPTER 3:

BASIC KNOWLEDGE OF EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS

Chapter 3 Basic Knowledge of Earthquake Engineering and Structural Dynamics.

3.1 Basic Knowledge of Earthquake Engineering

3.1.1 General

The basic knowledge of earthquake engineering required for bridge design is introduced in this Chapter. The introduced knowledge may be minimum and limited. Therefore, it is recommended that further reference is made to earthquake engineering related books for more detailed information or inquiry.

3.1.2 Causes of Earthquake

According to the definition in seismology, an earthquake is a phenomenon of ground shaking caused by movement at the boundary of tectonic plates of the Earth's crust by the sudden release of stress. The edges of tectonic plates are made by trench (or fractures or fault). Most earthquakes occur along the trench lines when the plates slide past each other or collide against each other.

There are mainly two types or causes of earthquake. One is caused by the movement of tectonic plate of the Earth's crust and the other is caused by the movement of active faults in the continental plate. There is another type called volcanic earthquake, in which the magma stored in reservoirs moves upwards, fractures the rock, and squeezes through, causing earthquakes usually with magnitudes not much significant.

The major characteristics of the two main types of earthquake and the location of plate boundaries and active faults in the Philippines defined by PHIVOLCS (Philippine Institute of Volcanology and Seismology) are shown in **Table 3.1-1**.

<u>Plate Boundary Type of Earthquake</u>

Most earthquakes occur along the edge of the oceanic and continental plates. The Earth's crust is made up of several plates. The plates under the oceans are called oceanic plates and the rest are continental plates. The plates are moved around by the motion of a deeper part of the mantle that lies underneath the crust. These plates are always bumping into each other, pulling away from each other, or past each other. Earthquakes usually occur where two plates run into each other or slide past each other.

Active Fault Type of Earthquake

Earthquakes can also occur far from the edges of plates, along active faults. Active faults are cracks in the earth where sections of a plate move in different directions. Active faults are caused by all that bumping and sliding the plates do. There are three main types of active fault movement which may cause an earthquake, namely; normal fault, reverse (thrust) fault and strike-slip fault.

Table 3.1-1 Types of Earthquake

3.1.3 Velocity and Transmission of Seismic Wave

There are several kinds of seismic wave, and they all move in different directions as shown in **Figure 3.1-1**. When the seismic wave is transmitted in bedrock or the ground, the amplitude becomes small. The phenomenon of decrement of the seismic wave is called dumping.

The two main types of waves are "body waves" and "surface waves". Body waves can travel through the Earth's crust, but surface waves can only move along the surface of the ground. Traveling through the Earth's crust, body waves arrive before the surface waves emitted by an earthquake. The body waves are of a higher frequency than surface waves. The transmission of each kind of seismic wave is explained in **Table 3.1-1**.

Body Wave (P Wave and S Wave)

The first kind of body wave is the primary wave (P wave). This is the fastest seismic wave, and consequently the first to arrive at a seismic station. P waves are also known as compressional waves. Subjected to a P wave, particles move in the same direction that the wave is moving in, which is the direction that the energy is traveling.

The other type of body wave is the secondary wave (S wave). An S wave is slower than a P wave and can only move through solid rock. S waves move rock particles up and down, or from side-to-side perpendicular to the direction that the wave is traveling. Travelling only through the crust, surface waves are of a lower frequency than body waves. Though they arrive after body waves, it is surface waves that are almost entirely responsible for the damage and destruction associated with earthquakes. This damage and the strength of the surface waves are reduced in deeper earthquakes.

Surface Wave (Love Wave and Rayleigh Wave)

The two main types of surface waves are "Love wave" and "Rayleigh wave". Love wave is the fastest surface wave and moves the ground from side-to-side. Confined to the surface of the Earth's crust, Love waves produce entirely horizontal motion.

Rayleigh wave rolls along the ground just like a wave rolls across a lake or an ocean. Since this wave rolls, it moves the ground up and down and from side-to-side in the same direction that the wave is moving. Most of the shaking felt from an earthquake is due to Rayleigh wave, which can be much larger than the other waves.

The velocity of a seismic wave depends on the density or hardness (modulus of elasticity) of the ground material. The velocity of P wave at ground surface is approximately 5 to 6 km/sec and the velocity of S wave is approximately 3 to 4 km/sec, that is, 60-70% of P wave. Surface wave is slightly slower than S wave. All waves are transmitted from the epicenter at the same time as an earthquake occurs.

However, the time lag of arrival of P waves and S waves become big depending on the distance from the epicenter as shown in **Figure 3.1-2.** This time lag is called as S-P time or duration of preliminary tremors. When the duration of preliminary tremors (sec) is multiplied by 8, it becomes the distance (km) to the epicenter. For example, if the duration of a preliminary tremor is 10 seconds, the distance to the epicenter could be evaluated at approximately 80 km.

Figure 3.1-1 Example of Seismic Wave in Different Directions

Table 3.1-2 Kinds of Seismic Wave Transmission

(Source: Michigan Tech, Geological and Mining Engineering and Science, http://www.geo.mtu.edu/UPSeis/index.html23)

(Source: Sapporo District Meteorological Observatory, http://www.jma-net.go.jp/sapporo/knowledge/jikazanknowledge/jikazanknowledge2_2.html)

Figure 3.1-2 Example of Seismic Wave Transmission to Different Locations

3.1.4 Time History Wave and Spectrum of Earthquake

Several period waves are contained in a time history earthquake wave. A time history earthquake wave could be recomposed into each period by its intensity, and its transform is called Fourier spectrum. However, it is difficult to find the influence to the structure during earthquake by the observation of Fourier spectrum. A better method to understand its behavior is to use response spectrum.

As shown in **Figure 3.1-3**, a response spectrum is simply a plot of the peak of a series of steady-state response with single-degree-of-freedom system varying natural frequency that are forced into motion by the same base vibration. The resulting plot can then be used to pick off the response of any linear system, given its natural frequency of vibration. In the case of acceleration, the response spectrum is called an acceleration response spectrum.

Figure 3.1-4 shows an example of transformation of the acceleration response spectrum from the observed time history wave of a previous earthquake in Japan. The figures include the matching of the target response spectrum by modification of time history wave.

Figure 3.1-3 Procedure of Transformation of Response Spectrum from Time History Wave

Figure 3.1-4 Example of Time History Earthquake Wave and Acceleration Response Spectrum
3.1.5 Intensity of Earthquakes (Magnitude, Seismic Intensity Scale and Engineering Seismic Coefficient)

(1) General

Basically, an earthquake is measured by its Magnitude and Intensity. The Magnitude indicates the amount of energy released at the source of one earthquake and is measured by the Magnitude Scale. The intensity of an earthquake at a particular locality indicates the violence of earth motion produced there by the earthquake. It is determined from reported effects of the tremor on human beings, furniture, buildings, geological structure, etc. In the Philippines, the PHIVOLCS Earthquake Intensity Scale (PEIS) is adopted, which classifies earthquake effects into ten scales. When an earthquake occurs, its magnitude can be given a single numerical value by the Magnitude Scale. However, the intensity is variable over the area affected by the earthquake, with high intensities near the epicenter and lower values further away. These are allocated a value depending on the effects of the shaking according to the Intensity Scale.

(Source: Sapporo District Meteorological Observatory, http://www.jma-net.go.jp/sapporo)

Figure 3.1-5 Deference between Magnitude and Intensity

(2) Magnitude Scale

Richter Magnitude Scale

In 1935, Charles Richter and Beno Gutenberg developed the local magnitude scale (MI), which is popularly known as the Richter magnitude scale, to quantify medium-sized earthquakes between magnitude 3.0 and 7.0. This scale was based on the ground motion measured by a particular type of seismometer at a distance of 100 km from the earthquake's epicenter. For this reason, there is an upper limit on the highest measurable magnitude, and all large earthquakes will tend to have a local magnitude of around 7. Since this MI scale was simple to use and corresponded well with the damage which was observed, it was extremely useful for engineering earthquake-resistant structures and gained common acceptance.

Moment Magnitude Scale (Mw)

The moment magnitude scale (Mw) is used by seismologists to measure the size of earthquake in terms of the energy released. The magnitude is based on the seismic moment of the earthquake, which is equal to the rigidity of the Earth multiplied by the average amount of slip on the fault and the size of the area that slipped. The scale was developed in the 1970's to succeed the 1930's Richter magnitude scale (Ml). Even though the formulae are different, the new scale retains the familiar continuum of magnitude values defined by the older one. The Mw is now the scale used to estimate magnitude for all modern large earthquakes by the United States Geological Survey (USGS).

(3) Seismic Intensity Scale

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is the government agency that is monitoring earthquakes that affect the Philippines. PHIVOLCS provided the earthquake intensity scale to determine the destructiveness of earthquake, as shown in **Table 3.1-3**

Scale		PGA (g values)	Description Perceptible to people under favorable circumstances. Delicately balanced objects are disturbed slightly. Still water in containers oscillates slowly. Felt by few individuals at rest indoors. Hanging objects swing slightly. Still		
Ι	Scarcely Perceptible	0.0005	Perceptible to people under favorable circumstances. Delicately balanced objects are disturbed slightly. Still water in containers oscillates slowly.		
Π	IISlightly Felt0.0009Felt by few individuals at rest indoors. Hanging objects swing slig water in containers oscillates noticeably.				
IIIWeak0.0011Felt by many people indoors especially in Vibration is felt like one passing of a light tru experienced by some people. Hanging objects in containers oscillates moderately.		Felt by many people indoors especially in upper floors of buildings. Vibration is felt like one passing of a light truck. Dizziness and nausea are experienced by some people. Hanging objects swing moderately. Still water in containers oscillates moderately.			
IV	Moderately Strong	0.0050	Felt generally by people indoors and by some people outdoors. Light sleepers are awakened. Vibration is felt like a passing of heavy truck. Hanging objects swing considerably. Dining plates, glasses, windows and doors rattle. Floors and walls of wood framed buildings creak. Standing motor cars may rock slightly. Liquids in containers are slightly disturbed. Water in containers oscillates strongly. Rumbling sound may sometimes be heard.		
V	Strong	0.0100	Generally felt by most people indoors and outdoors. Many sleeping people are awakened. Some are frightened, some run outdoors. Strong shaking and rocking felt throughout building. Hanging objects swing violently. Dining utensils clatter and clink; some are broken. Small, light and unstable objects may fall or overturn. Liquids spill from filled open containers. Standing vehicles rock noticeably. Shaking of leaves and twigs of trees are noticeable.		
VI	Very Strong	0.1200	Many people are frightened; many runs outdoors. Some people lose their balance. Motorists feel like driving in flat tires. Heavy objects or furniture move or may be shifted. Small church bells may ring. Wall plaster may crack. Very old or poorly built houses and man-made structures are slightly damaged though well-built structures are not affected. Limited rock-falls and rolling boulders occur in hilly to mountainous areas and escarpments. Trees are noticeably shaken.		

Table 3.1-3 PHIVOLCS Earthquake Intensity Scale (PEIS)

	VII	Destructive	0.2100	Most people are frightened and run outdoors. People find it difficult to stand in upper floors. Heavy objects and furniture overturn or topple. Big church bells may ring. Old or poorly-built structures suffer considerable damage. Some well-built structures are slightly damaged. Some cracks may appear on dikes, fish ponds, road surface, or concrete hollow block walls. Limited liquefaction, lateral spreading and landslides are observed. Trees are shaken strongly. (Liquefaction is a process by which loose saturated sand lose strength during an earthquake and behave like liquid).
X	VIII	Very Destructive	0.3600- 0.5300	People panicky. People find it difficult to stand even outdoors. Many well- built buildings are considerably damaged. Concrete dikes and foundation of bridges are destroyed by ground settling or toppling. Railway tracks are bent or broken. Tombstones may be displaced, twisted or overturned. Utility posts, towers and monuments mat tilt or topple. Water and sewer pipes may be bent, twisted or broken. Liquefaction and lateral spreading cause man- made structures to sink, tilt or topple. Numerous landslides and rock-falls occur in mountainous and hilly areas. Boulders are thrown out from their positions particularly near the epicenter. Fissures and fault-rapture may be observed. Trees are violently shaken. Water splash or top over dikes or banks of rivers.
	IX	Devastating	0.7110- 0.8600	People are forcibly thrown to ground. Many cry and shake with fear. Most buildings are totally damaged. Bridges and elevated concrete structures are toppled or destroyed. Numerous utility posts, towers and monument are tilted, toppled or broken. Water sewer pipes are bent, twisted or broken. Landslides and liquefaction with lateral spreading and sand-boils are widespread. The ground is distorted into undulations. Trees shake very violently with some toppled or broken. Boulders are commonly thrown out. River water splashes violently on slops over dikes and banks.
	X	Completely Devastating	1.1500<	Practically all man-made structures are destroyed. Massive landslides and liquefaction, large scale subsidence and uplifting of land forms and many ground fissures are observed. Changes in river courses and destructive seethes in large lakes occur. Many trees are toppled, broken and uprooted.

(Source: PHIVOLCS)

(4) Engineering Seismic Coefficients

The PHIVOLCS Earthquake Intensity Scale (PEIS) described above show the destructivity impact of earthquakes qualitatively. However, PEIS is not used for bridge seismic design. The bridge seismic design expresses the strength of earthquake by the seismic coefficient or Peak Ground Acceleration (PGA) of the ground surface.

The seismic coefficient of bridge seismic design (k) is formulated as follows, expressing the ratio between the maximum acceleration of the ground surface (α) and the acceleration of gravity (g).

$$k = \frac{\alpha}{g} = \frac{\alpha(gal)}{980(gal)} \approx \frac{\alpha}{1000}$$

Table 3.1-4, shows a comparison including (1) the location of existing trench and fault, which was shown in Error! Reference source not found.; (2) the seismic zone map, which is currently used by DPWH for bridge seismic design with acceleration coefficient (A) of 0.40, except for Palawan with A = 0.20; and (3) the proposed Peak Ground Acceleration (PGA) map provided by the Project.

Table 3.1-4 Comparison of Seismic Intensity for Bridge Design

3 - 12

3.2 Basic Knowledge of Structural Dynamics

3.2.1 General

The basic knowledge of structural dynamics required for bridge design is introduced in this Chapter. The introduced knowledge may be minimum and limited. Therefore, it is recommended that further reference is made to structural dynamics related books for more detailed information or inquiry.

3.2.2 Characteristic Vibration of Structure and Seismic Load

<u>Normal Mode</u>

A Normal Mode is a pattern of motion in which all parts of the system move at the same frequency and with a fixed phase relation. The motion described by the normal mode is called resonance. The frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, etc., has a set of normal modes that depend on its structure, materials and boundary conditions.

A mode of vibration is characterized by a modal frequency and a mode shape. It is numbered according to the number of half waves in the vibration. As shown in

Figure 3.2-1, if a vibrating beam with both ends pinned displayed a mode shape of half of a sine wave (one peak on the vibrating beam) it would be vibrating in Mode 1. If it had a full sine wave (one peak and one valley) it would be vibrating in Mode 2. **Figure 3.2-2** shows the case of cantilever such as bridge pier.

Figure 3.2-1 Example of Normal Modes of Beam

Figure 3.2-2 Example of Normal Modes of Cantilever

Resonance and Forced Vibration

In physics, resonance is the tendency of a bridge to vibrate with greater amplitude at some frequencies than at others. Frequencies at which the response amplitude is a relative maximum are known as the resonance frequencies. At these frequencies, even small periodic driving forces can produce large amplitude vibration, because the bridge stores vibration energy.

Forced vibration is a vibration caused forcibly by receiving the external force to fluctuate such as earthquakes. When the periods of forced vibration is the same or close to the natural frequency of the bridge, the vibration occurs remarkably. It is also called as resonance.

Acceleration Response Spectrum and Vibration Mode

The expected acceleration response of a bridge during earthquake is called as Acceleration Response Spectrum, which was explained in Section 1.4. The Design Response Spectrum for acceleration is developed, as shown in **Table 3.1-3** with site coefficient for Peak Ground Acceleration (PGA), 0.2-sec period spectral acceleration, and 1.0-sec period spectral acceleration in the Bridge Seismic Design Specification.

An example of calculation of Design Acceleration Spectrum is shown in **Figure 3.2-2.** The first natural period of ordinary bridge is basically short such as T1=0.5 (sec), which is defined with the strength of substructure and supported mass of superstructure. However, the natural period of high elevated bridge or bridges which adopt rubber bearings are longer than the ordinary bridge. In that case, the acceleration response can be estimated as smaller than that of ordinary bridge.

3.2.3 Material Non-linearity

The "linear" behavior could be defined as a property which could be "superposition relation" between the causes and effects. As an example, displacement of the vertical direction of bridge girder becomes large in proportion to the vertical load. In addition, as shown in **Figure 3.1-2**, the total displacement can be calculated by summing up the vertical displacement due to dead load, live load, etc. Its behavior could be called linear.

Total Displacement

Figure 3.2-3 Example of Superposition Relation in Linear Property

On the other hand, non-linear means not linear in mathematical terms. In other words, it is the phenomenon that superposition relation is not formed. As an example, the reinforced concrete used in bridge construction (the stress-strain relation of reinforcing bar is as shown in **Figure 3.2-4**) does not appear to be on a straight line because the plastic deformation happens when the strain reaches the yield stress, and the strain grows after the yielding. Material non-linearity means that the straight line does not have stress and strain relationship in this way. However, it may be said that the above-mentioned superposition relationship is up to the yielding point of materials, because the stress-strain relation of reinforced bar is a straight line. The stress-strain relation of concrete is also non-linear when the strain of concrete is large as shown in Error! Reference source not found.

Figure 3.2-4 Ideal Stress-Strain Relation of Reinforcing Bar

Figure 3.2-5 Ideal Stress-Strain Relation of Concrete

The material non-linearity is one of the important considerations for the seismic design, especially when large-scale earthquakes are considered because the material may behave in non-linear level.

The non-linearity horizontal force-displacement relation of reinforced concrete pier is shown in

Figure 3.2-6. The restitution force of reinforced concrete shall be considered when the bridge pier had suffered from a repetitive force such as a large-scale earthquake. Generally, the skeleton of repetitive force contains cracking of concrete, yielding of reinforced bar and, ultimately, compression of concrete in the tri-linear type of skeleton model such as Takeda Model. The stiffness of reinforced concrete is changed by major events such as cracking or yielding. When the bridge pier had behaved as non-linear, the residual displacement will remain after the earthquake.

Figure 3.2-7 shows an example of historical curve of the bending moment-curvature relation at pier

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

bottom obtained by Non-linear time history response analysis.

Figure 3.2-6 Non-linear Behavior of Reinforced Concrete Pier

Figure 3.2-7 Example of Historical Curve of the Bending Moment-Curvature at Pier Bottom

3.2.4 Static Design and Dynamic Design Methods

The analysis method of seismic design is classified into static analysis and dynamic analysis. Since earthquake is a dynamic phenomenon and the response of a structure usually changes from time to time, dynamic analysis is desirable to use in the seismic design of bridges. However, if the behavior of the structure is not complicated, the static analysis has to be carried out, because the dynamic analysis is complicated.

The major dynamic analysis methods for bridge seismic design are shown in **Table 3.2-1**. These analysis methods have their own characteristics and the method shall be selected according to the type of bridge.

Remarks		- Eigenvalue Analysis is required -Non-linear behavior is not considered	- Following integral calculus method are usually employed, Newmark Wilson $\theta \beta$ Runge-Kutta
Major Output	- Natural Period - Mode Shape	- Maximum Response (Acceleration, Velocity, Displacement and Section Forces, etc.)	- Time History Response (Acceleration, Velocity, Displacement and Section Forces, etc.)
Input Force for Seismic Design	- N/A	- Acceleration Response Spectrum	- Time History Seismic Wave
Analytic Model	Linear	Linear	Linear/ Non- linear
Description	Eigenvalue analysis is an analysis to obtain the vibration characteristics of the structure itself (natural period and mode shape). When the natural period of the structure is close to the distinction of seismic force, sympathetic vibration will occur. This may be caused by fatigue or the destruction of the bridge. It is important to identify the Eigenvalue to avoid sympathetic vibration of bridges during earthquake.	The response spectrum shows a maximum response level (Acceleration, Velocity, etc.) of the single degree of freedom (SDOF) model (having one natural period and one dumping coefficient) during earthquake. The maximum response of the multi-degree of freedom (MDOF) model could be estimated to sum up multi-modal response. This is Response Spectrum Analysis.	Time history response analysis has two kinds of analytical method, namely; "time history modal analysis method" and "direct numerical integration method". The direct numerical integration method is usually used in bridge seismic design exercises on the response of structure by direct numerical integration. The stiffness matrix could be changed at every step of calculation on the direct numerical integration. Therefore, this method is popularly used for the non-linear analysis, such as a complicated structure including high frequency vibration modes.
Analysis Method	Eigenvalue Analysis	Response Spectrum Analysis	Time History Response Analysis

Table 3.2-1 Major Dynamic Analysis Methods for Bridge Seismic

3.2.5 Load Factor Design (LFD) and Load and Resistance Factor Design (LRFD)

In 1994, the first edition of the "AASHTO LRFD Bridge Design Specifications" was published, placing earthquake loading under Extreme Event I limit state. Similar to the 1992 edition, the LRFD edition accounts for column ductility using the response modification R factors. In 2008, the "AASHTO LRFD Interim Bridge Specifications" was published to incorporate more realistic site effects based on the 1989 Loma Prieta earthquake in California. Moreover, the elastic force demand is calculated using the 1,000-year maps as opposed to the earlier 500-year return earthquake.

The comparison of ASD (WSD), LFD and LRFD is shown in Table 3.2-2

Design Method	ASD: Allowable Stress Design	LFD: Load Factor Design	LRFD: Load and Resistance Factor Design		
	(WSD: Working Stress Design)	(Strength Design)	(Reliability Based Design/ LSD: Limit State Design)		
Description	A method where the nominal strength is divided by a safety factor to determine the allowable strength. This allowable strength is required to equal or exceed the required strength for a set of ASD load combinations. $RS = \frac{ULIMATE RESISTANCE}{APPLED LOAD} = \frac{R_n}{Q}$ R_n RESISTANCE OR LOADS (R. Q)	LFD is a kind of the so-called Limit State Design (LSD) method. The limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements. LSD requires the structure to satisfy three principal criteria: the Ultimate Limit State (ULS), the Serviceability Limit State (SLS) and the Fatigue Limit State (FLS).	The LRFD method subdivides the limit state of the structure compared to the LFD method. In addition, load factor and resistance factor are modified based on probability statistics data from a combination of limit state of various loads. The LRFD method modifies three equivalents to LFD method, such as Service Limit State, Fatigue & Fractural Limit State, Strength Limit State, and the coefficient is changed.		
Basic Equation	$\Sigma DL + \Sigma LL \le R_u / FS$ where, FS: Factor of Safety	$\begin{split} \gamma(\Sigma\beta_{DL}DL + \Sigma\beta_{LL}LL) &\leq \phi R_{u} \\ \text{where,} \\ \gamma : \text{Load Factor} \\ \beta : \text{Load Combination Coefficient} \\ \phi : \text{Resistance Factor} \end{split}$	$\begin{split} \eta(\Sigma\gamma_{DL}DL + \Sigma\gamma_{LL}LL) &\leq \varphi R_{u} \\ \text{where,} \\ \eta: \text{Load modifier} \\ \gamma: \text{Load Factor} \\ \varphi: \text{Resistance Factor} \end{split}$		
Advantage	- Simplistic	 Load factor applied to each load combination Types of loads have different levels of uncertainty 	 Accounts for variability Uniform levels of safety Risk assessment based on reliability theory 		
Limitation	 Inadequate account of variability Stress not a good measure of resistance Factor of Safety is subjective No risk assessment based on reliability theory 	 More complex than ASD No risk assessment based on reliability theory 	 Requires availability of statistical data Resistance factors vary Old habits 		

Table 3.2-2 Comparison of ASD, LFD and LRFD

Intentionally Blank

CHAPTER 4: ANALYSIS METHOD

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Chapter 4 Analysis Method

The primary purpose of this chapter is to present dynamic method for analyzing bridge structures when subjected to earthquake load. Basic concepts and assumptions were used in the following sample applications.

4.1 Simplified Method

4.1.1 Uniform Load Method

The uniform load method is essentially an equivalent static method that uses the uniform lateral load to compute the effect of seismic loads. For simple bridge structures with relatively straight alignment, small skew, balanced stiffness, relative light substructure, and with no hinges, uniform load method may be applied to analyze the structure for seismic loads. This method is not suitable for bridges with stiff substructures such as pier walls. This method assumes continuity of the structure and distributes earthquake force to all elements of the bridge and is based on the fundamental mode of vibration in either longitudinal or transverse direction (AASHTO,2012). The period of vibration is taken as that of an equivalent single mass-spring oscillator. The maximum displacement that occurs under the arbitrary uniform load is used to calculate the stiffness of the equivalent spring. The seismic elastic response coefficient C_{sm} or the Acceleration Response Spectrum ARS curve is then used to calculate the equivalent uniform seismic load using, which the displacements and forces are calculated. The following steps outline the uniform load method:

AASHTO Method

The following steps outline the uniform load method:

1. Idealize the structure into a simplified model and apply a uniform horizontal load P_o over the length of the bridge as shown in Figure above. It has units of force/unit length and may be arbitrarily set equal to 1 kN/m.

*p*₀=1.0KN/m L=105/2=52.5m

2. Calculate the static displacements v_{smax} under the uniform load po using static analysis.

$$v_{sMax} = \frac{Wuh^3}{3EI} = P_0 L \times h^3 / (3EI) = 1 \times 52.5 \times 14.8^3 / (3 \times 81,400,000) = 0.0007 \text{ m}$$

3. Calculate bridge lateral stiffness K.

$$K = \frac{p_0 L}{v_{s Max}} \qquad \qquad Eq \, 4.1.1$$

4. Calculate the total weight W of the structure including structural elements and other relevant Loads.

$$W = \int w(x) dx \qquad \qquad \text{Eq 4.1.2}$$

5. Calculate the period of the structure T_n using the following equation:

$$T_m = 2\pi \sqrt{\frac{W}{gK}} = 2 \times \pi \sqrt{(8767.5/9.8/75000)} = 0.685 \text{ sec}$$

6. Calculate the equivalent static earthquake force pe using the ARS curve.

 $P_e = C_{sm} W/L$ Equivalent static seismic loading per unit length

From following Spectrum,

 $C_{sm} = S_{D1}/T_m = 0.64/0.685 = 0.93$

JRA Method

$$v_{sMax} = \frac{Wuh^3}{3EI} + \frac{0.8W_ph_p^3}{8EI} \dots JRA$$

Wu: Dead load of superstructure = 167KN / m \times (35 + 35 / 2) = 8767.5KN

$$\begin{split} &\textit{Wp: Dead load of pier} = (11 \times 3.14/4 \times 2.8^{2} + 2.9 \times ((2.8 + 9.1) / 2 \times 0.75 + 1.25 \times 9.1)) \times 24 \\ &= 2829 \text{KN} \\ &\text{EI} = 27,000,000 \text{KN/m2} \times (3.14 \times 2.8^{4})/64 = 81,400,000 \text{KN} \cdot \text{m2} \\ &\textit{V}_{S Max} = 8767.5 \times 14.8^{3} / (3 \times 81,400,000) + 0.8 \times 2829 \times 13.0^{3} / (8 \times 81,400,000) \\ &= 0.116 + 0.008 = 0.123 \text{m} \\ &\text{K} = (8767.5 + 2829) / 0.123 = 94280 \text{KN/m} \\ &\textit{T}_{m} = 2\pi \sqrt{\frac{W}{gK}} = 2 \times \pi \times \sqrt{-} (8767.5 + 2829) / 9.8 / 94280 = 0.70 \text{sec} \end{split}$$

4.1.2 Single Mode Spectral Method

The single-mode spectral analysis is based on the assumption that earthquake design forces for structures respond predominantly in the first mode of vibration. This method is most suitable to regular linear elastic bridges to compute the forces and deformations, but not applicable for irregular bridges (unbalanced spans, unequal in the columns, etc.) because higher modes of vibration affect the distribution of the forces and resulting displacements significantly (Chen 2014). This method can be applied to both continuous and noncontinuous bridge superstructures.

The inertial forces $p_e(x)$ are calculated using the natural period and the design forces and displacement are then computed using static analysis as shown in the example below.

- (1) Longitudinal Direction Displacement due to $P_0 = 1$ KN/m. Superstructure uniformly 0.00157m $\alpha = \int v(x)dx = 0.00157*105 = 0.165$ $\beta = \int w(x)v(x)dx = \int 167 * 0.00157dx = 27.5$ $\gamma = \int w(x)v(x)^2 dx = \int 167 * 0.00157^2 dx = 0.043$ $T_m = 2 \pi \sqrt{(\gamma / (p_0^*g^* \alpha) = 2^*3.14\sqrt{(0.043 / 1.0^*9.8*0.165)} = 1.02 \text{sec})}$ $p_e(x) = \beta C_m / \gamma * w(x)v(x) = 27.5*1.0/0.043*167*0.00157 = 167 \text{KN}}$
- (2) Transverse Direction Refer to Excel sheet

 $\begin{aligned} \alpha &= 0.016 \\ \beta &= 7.59 \\ \gamma &= 2.33 \times 10^{-6} \\ T_m &= 2 \pi \sqrt{(.00405084 / (1.0*9.8*0.016) = 1.0 \text{ sec})} \\ p_e(x) &= \beta C_m / \gamma * w(x) v(x) = 7.59*0.53/2.33 \times 10^{-6*} v(x) \\ v(x) &= Dy \text{ (on next page)} \end{aligned}$

Displacement -Y (Transverse direction)								
NODE	LOAD	DY (m)	wv*DY	wy*DY^2	Rx	Rz		
1	UNIT LOAD Y	0.000018	240	0.00432	7.776E-08	-0.000007	0.00002	
2	UNIT LOAD Y	0.000199	484.3	0.096376	1.918E-05	-0.000018	0.000019	
3	UNIT LOAD Y	0.000362	484.3	0.175317	6.346E-05	-0.000030	0.000016	
4	UNIT LOAD Y	0.000495	484.3	0.239729	0.0001187	-0.000042	0.000013	
5	UNIT LOAD Y	0.000589	484.3	0.285253	0.000168	-0.000053	0.000008	
6	UNIT LOAD Y	0.000653	484.3	0.316248	0.0002065	-0.000053	0.000006	
7 UNIT LOAD Y		0.00068	484.3	0.329324	0.0002239	-0.000053	0.000001	
8 UNIT LOAD Y		0.00066	484.3	0.319638	0.000211	-0.000053	-5E-06	
9	UNIT LOAD Y	0.000594	484.3	0.287674	0.0001709	-0.000053	-9E-06	
10	UNIT LOAD Y	0.000495	484.3	0.239729	0.0001187	-0.000042	-1.3E-05	
11	UNIT LOAD Y	0.00036	484.3	0.174348	6.277E-05	-0.000030	-1.6E-05	
12	UNIT LOAD Y	0.000197	484.3	0.095407	1.88E-05	-0.000018	-1.9E-05	
13	UNIT LOAD Y	0.000017	484.3	0.008233	1.4E-07	-0.000006	-0.00002	
1287	UNIT LOAD Y	0.00008	484.3	0.038744	3.1E-06	-0.000011	0.000019	
1288	UNIT LOAD Y	0.00014	484.3	0.067802	9.492E-06	-0.000015	0.000019	
1289	UNIT LOAD Y	0.000256	484.3	0.123981	3.174E-05	-0.000022	0.000018	
1290	UNIT LOAD Y	0.00031	484.3	0.150133	4.654E-05	-0.000026	0.000017	
1291	UNIT LOAD Y	0.00041	484.3	0.198563	8.141E-05	-0.000034	0.000015	
1292	UNIT LOAD Y	0.000454	484.3	0.219872	9.982E-05	-0.000038	0.000014	
1293	UNIT LOAD Y	0.000531	484.3	0.257163	0.0001366	-0.000045	0.000011	
1294	UNIT LOAD Y	0.000562	484.3	0.272177	0.000153	-0.000049	0.00001	
1295	UNIT LOAD Y	0.000667	484.3	0.323028	0.0002155	-0.000053	0.000004	
1296	UNIT LOAD Y	0.000677	484.3	0.327871	0.000222	-0.000053	0.000002	
1297	UNIT LOAD Y	0.000679	484.3	0.32884	0.0002233	-0.000053	-1E-06	
1298	UNIT LOAD Y	0.000672	484.3	0.32545	0.0002187	-0.000053	-3E-06	
1299	UNIT LOAD Y	0.000643	484.3	0.311405	0.0002002	-0.000053	-6E-06	
1300	UNIT LOAD Y	0.000621	484.3	0.30075	0.0001868	-0.000053	-8E-06	
1301	UNIT LOAD Y	0.000565	484.3	0.27363	0.0001546	-0.000050	-0.00001	
1302	UNIT LOAD Y	0.000532	484.3	0.257648	0.0001371	-0.000046	-1.2E-05	
1303	UNIT LOAD Y	0.000454	484.3	0.219872	9.982E-05	-0.000038	-1.4E-05	
1304	UNIT LOAD Y	0.000409	484.3	0.198079	8.101E-05	-0.000034	-1.5E-05	
1305	UNIT LOAD Y	0.000309	484.3	0.149649	4.624E-05	-0.000026	-1.7E-05	
1306	UNIT LOAD Y	0.000254	484.3	0.123012	3.125E-05	-0.000022	-1.8E-05	
1307	UNIT LOAD Y	0.000139	484.3	0.067318	9.357E-06	-0.000014	-1.9E-05	
1308	UNIT LOAD Y	0.000078	484.3	0.037775	2.946E-06	-0.000010	-1.9E-05	
1309	UNIT LOAD Y	0.000613	484.3	0.296876	0.000182	-0.000053	0.000007	
1310	UNIT LOAD Y	0.000634	240	0.15216	9.647E-05	-0.000053	0.000007	
		0.016008	17430.5	7.593391	0.00405084			
		α		β	Y			

Table 4.1-1 Division Number 105/36=2.9m

4.2 Linear Analysis

4.2.1 Model Analysis

Equation of motion of multi-freedom system is expressed as follows

MÖ+CÓ+KD=MZ Z=ŻL	(4.2.1) (4.2.2)
M: Mass Matrix, C: Damping Matrix, K: Stiffness Matrix, D: Displacen	nent vector
Z : Acceleration vector of the ground, L: Acceleration distribution vector	
D can be dissolved by mode vector $\boldsymbol{\varphi}$ and generalized coordinate \mathbf{q} .	
$\mathbf{D} = \phi_1 q_1 + \phi_2 q_2 + \cdot \cdot \cdot \cdot \phi_n q_n = \Sigma \phi_j q_j \dots$	(4.2.3)
$\mathbf{M}\boldsymbol{\phi} \mathbf{q} + \mathbf{C}\boldsymbol{\phi} \mathbf{\dot{q}} + \mathbf{K}\boldsymbol{\phi} \mathbf{q} = -\mathbf{M}\mathbf{\ddot{Z}}$	(4.2.4)
Multiply transposed Matrix φ^{T}	
$\boldsymbol{\phi}^{\mathrm{T}} \mathbf{M} \boldsymbol{\phi} \stackrel{"}{\mathbf{q}} + \boldsymbol{\phi}^{\mathrm{T}} \mathbf{C} \boldsymbol{\phi} \stackrel{"}{\mathbf{q}} + \boldsymbol{\phi}^{\mathrm{T}} \mathbf{K} \boldsymbol{\phi} \stackrel{"}{\mathbf{q}} = - \boldsymbol{\phi}^{\mathrm{T}} \mathbf{M} \stackrel{"}{\mathbf{Z}} \qquad \dots \dots$	(4.2.5)
$\boldsymbol{\phi}^T \boldsymbol{M} \boldsymbol{\phi} = \overline{\boldsymbol{M}} = \begin{bmatrix} \overline{M}_1 & 0 & \dots & 0 \\ 0 & \overline{M}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \overline{M}_n \end{bmatrix}$	
$\boldsymbol{\phi}^T \boldsymbol{C} \boldsymbol{\phi} = \overline{\boldsymbol{C}} = \begin{bmatrix} C_1 & 0 & \dots & 0 \\ 0 & \overline{C}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \overline{C}_n \end{bmatrix}$	
$\boldsymbol{\phi}^T \boldsymbol{K} \boldsymbol{\phi} = \overline{\boldsymbol{K}} = \begin{bmatrix} \overline{K}_1 & 0 & \dots & 0 \\ 0 & \overline{K}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \overline{K}_n \end{bmatrix}$	

Eq 4.2.5 can be dissolved into n number independent 1 degree freedom equations. In case of 2 dimension, $L_{\chi}^{T} = (1010 \cdot \cdot \cdot \cdot \cdot 10), L_{\chi}^{T} = (0101 \cdot \cdot \cdot \cdot \cdot 01)$

 $\omega_{j}^{2} = \overline{\mathrm{KJ}}/\overline{\mathrm{MJ}}, h_{j} = \overline{\mathrm{C}}_{\mathrm{J}}/(2\omega_{j}\overline{\mathrm{MJ}}, f_{j} = \overline{\mathrm{F}}_{\mathrm{J}}/\overline{\mathrm{MJ}} \qquad (4.2.6)$

$$\ddot{q}_{j}+2h_{j}\omega_{j}\dot{q}_{j}+\omega_{j}^{2}q_{j}=f_{j}$$
 (4.2.7)

ParticipationFactor
$$\beta_j = \varphi_j^T M L_j / \overline{MJ}$$
 (4.2.9)

$$q_{j} = \exp\left\{-h_{j}\omega_{j}t\right\}\left\{\overline{A}_{j}\cos\omega_{j}'t + \overline{B}_{j}\sin\omega_{j}'t\right\} - \frac{\beta_{j}}{\omega_{j}'}\int_{0}^{t}\ddot{z}(\tau)\exp\left\{-h_{j}\omega_{j}(t-\tau)\right\}\sin\omega_{j}'(t-\tau)d\tau$$

$$(4.2.10)$$

Where

$$\omega_j' = \omega_j \sqrt{(1-h_j^2)}$$

Effective mass
$$m_j = (\varphi_j^T M L_j)^{-2} / \overline{M}_j$$
 (4.2.11)

4.2.2 Response Spectrum method

We can obtain the right answer of the time history multi-freedom structural system by above mentioned modal analysis. However, time history response is not necessarily required and only the maximum response is necessary for seismic design of the structures.

Maximum response in j-th can be obtained from Eq. 4.2.10.

$$S_{Dj} = q_{jmax}$$

$$S_{Vj} = \dot{q}_{jmax} \approx \omega S_{Dj}$$

$$S_{Aj} = (\ddot{q}_{j} + \vec{z})_{max} \approx \omega^{2} S_{Dj}$$

$$(4.2.12)$$

Maximum response of j order mode is $Rj = \phi_j \beta_j S_{Dj}$ Design value shall be obtained as the CQC (Complete Quadratic Combination) value.

$$R_{\max} = \left[\sum_{j=1}^{N} \sum_{j=1}^{N} R_i \rho_{ij} R_j\right]^{1/2} \quad$$
(4.2.13)

Where,

$$\rho_{ij} = \frac{8\xi^2 (1+r)r^{3/2}}{(1-r^2)^2 + 4\xi^2 r (1+r)^2}, \quad r = \omega_j / \omega_i$$

 R_{max} : Peak ResponseRj: Peak response of i-th modeR: Natural frequency ratio of i-th mode to j-th mode ξ :Damping ratio

4.2.3 Time History Direct Integration Analysis

(Newmark's β Method)

 $\mathbf{m}\ddot{\boldsymbol{u}} + \mathbf{c}\dot{\boldsymbol{u}} + \mathbf{k}\mathbf{u} = \mathbf{p}(\mathbf{t}) \qquad (4.2.14)$

Dividing p(t) into small time increment, pi and Pi+1

$$\dot{\mathbf{u}}_{i+1} = \dot{\mathbf{u}}_i + \frac{1}{2} \Delta t (\ddot{\mathbf{u}}_t + \ddot{\mathbf{u}}_{t+1}) \dots$$
(4.2.16)

$$\mathbf{u}_{i+1} = \mathbf{u}_i + \Delta t \dot{\mathbf{u}}_i + (\frac{1}{2} - \beta) \Delta t^2 \ddot{\mathbf{u}}_i + \beta \Delta t^2 \ddot{\mathbf{u}}_{i+1} \dots$$
(4.2.17)

Obtaining unknown vector \ddot{u}_{i+1} , by putting (4.2.17) into (4.2.14),

$$\ddot{\mathbf{u}}_{i+1} = (\mathbf{m} + \frac{\Delta \mathbf{t}}{2}\mathbf{c} + \beta \Delta \mathbf{t}^2 \mathbf{k})^{-1} \left[\boldsymbol{p}_{i+1} - \boldsymbol{c} \left(\dot{\boldsymbol{u}}_i + \frac{\Delta t}{2} \ddot{\boldsymbol{u}}_i \right) - \boldsymbol{k} \left\{ \boldsymbol{u}_i + \Delta t \dot{\boldsymbol{u}}_i + \left(\frac{1}{2} - \beta \right) \Delta t^2 \ddot{\boldsymbol{u}}_i \right\} \right] \cdot (4.2.18)$$

Therefore, response value $\ddot{\mathbf{u}}_{i+1}$, $\dot{\mathbf{u}}_{i+1}$, \mathbf{u}_{i+1} can be obtained from known value $\ddot{\mathbf{u}}_i$, $\dot{\mathbf{u}}_i$, \mathbf{u}_i . 1/4, 1/6 are usually adopted as β .

Time increment for direct integration is as follows.

$$\Delta t = \frac{T_p}{10} \qquad (4.2.19)$$

Where, Tp = the highest modal period being considered.

4.3 Inelastic Time History Analysis

In seismic engineering, it is nowadays common to distinguish between so-called *force based* and *displacement-based* analysis techniques. Although it is not always strictly defined what these two expressions comprise in detail, it appears justified to make a difference between these two conceptual approaches. Many existing seismic codes including the current BSDS can be considered as **force-based**. **This Chapter does not have the status of a code but may rather be considered as a guide**.

While force-based analysis represents the more traditional approach, modern displacement-based analysis methods bear some conceptual advantages. They may be considered as more accurate, but they are also somewhat more demanding with respect to the knowledge of the analyzing engineer. One possible alternative to traditional force-based analysis is represented by an *inelastic time history analysis* (ITHA) which may be considered as the most complete analysis technique. In this method the inelastic behavior of the system is explicitly modeled – including the hysteretic response of the members under cyclic loading. Using this model, a real dynamic analysis is conducted in which the differential equation of motion is solved (numerically) for a given ground motion exciting the base of the structure.

As ITHA is conceptually able to capture the important phenomena related to the seismic response of the system, the quality of the analysis results only depends on the accuracy of the inelastic structural model and the adequacy of the used input ground motions. The remaining uncertainties resulting from these two issues should not be underestimated so that even this advanced analysis technique does not necessarily guarantee a fully realistic assessment result.

As inelastic time history analysis gives a complete picture of the entire response, including the inelastic force and displacement time history of the individual members, it might be considered as superordinate to *force based* or *displacement-based* analyses techniques. Therefore, ITHA is not only the conceptually most realistic analysis approach, but it also gives the most complete set of structural response data. These also allow the computation of the energy dissipated by individual members. Such data can theoretically be used for damage estimations taking the cyclic response into account (provided an appropriate damage model is available).

Despite these considerable advantages of ITHA, it may not be the best choice for the analysis of structures in ordinary cases, e.g. in an engineering company. Aside from the fact that ITHA can become computationally rather demanding, its application also requires advanced knowledge of the method. The sophisticated numerical solution strategies of the inelastic dynamic problem are sensitive to several aspects and convergence is not always guaranteed. Furthermore, the hysteretic modeling of the structure requires a considerable amount of additional data to fully characterize the inelastic system behavior, whose realistic determination might not always be straightforward. Other aspects, as e.g. the choice of adequate ground motions or appropriate viscous damping models, need to be considered in addition. The large amount of required data and the sophistication of the problem can make ITHA somewhat prone to errors, especially if the analyzing engineer is not sufficiently familiar with the potential sources of errors.

ITHA is dynamic analysis, which considers material nonlinearity of a structure. Considering the efficiency of the analysis, nonlinear elements are used to represent important parts of the structure, and

the remainder is assumed to behave elastically. Explanation of material non-linearity were defined in Chapter 3.

4.3.1 Analysis Method

When the structure enters the nonlinear range, or has nonclassical damping properties, modal analysis cannot be used. A numerical integration method sometimes referred to as time history analysis, is required to get more accurate responses of the structure. In a time history analysis, the time scale is divided into a series of smaller steps, $d\tau$. Let us say the response at *i*th time interval has already determined and is denoted by *ui*, $\dot{u}i$, $\ddot{u}i$. Then, the response of the system at *i*th time interval will satisfy the equation of motion (Equation 4.3.2).

$$[M]\{\ddot{u}_i\} + [C]\{\dot{u}_i\} + [K]\{u_i\} = -[M]\{\ddot{u}_{gi}\} \qquad (4.3.2)$$

The time stepping method enables us to step ahead and determine the responses u_i+1 , \dot{u}_{i+1} , \ddot{u}_{i+1} at $i + 1_{th}$ time interval by satisfying the Equation 4.3.2. Thus, the equation of motion at i + 1th time interval will be

$$[M]\{\ddot{u}_{i+1}\} + [C]\{\dot{u}_{i+1}\} + [K]\{u_{i+1}\} = -[M]\{\ddot{u}_{gi+1}\} \qquad (4.3.3)$$

Equation 4.3.3 needs to be solved before proceeding to the next time step. By stepping through all the time steps, the actual response of the structure can be determined at all time instants. Direct integration must be used for inelastic time history analysis of a structure, which contains nonlinear elements of the Element Type. If a structure contains nonlinear elements of the Force Type only, much faster analysis can be performed through modal superposition. From this point on, inelastic time history analysis by direct integration is explained.

4.3.1.1 Direct Integration Method

These procedures will allow the nodal displacements to be determined at different time increments for a given dynamic system. By applying a direct integration scheme, equation is integrated using a **numerical step-by-step procedure**. The methods do not require any transformations of the equations into different forms and are therefore considered as direct. Direct numerical integration is based on fulfilling two fundamental conditions, (1) instead of satisfying previous equation at any time t the aim is to satisfy it only at discrete time intervals separated by an increment Dt. The result of this is that static equilibrium, which includes the effect of inertia and damping forces, is sought at discrete time instances within the studied time interval. The second condition (2) is that the variation of displacements, velocities and accelerations within each time interval Dt is assumed. These assumptions will determine the accuracy and stability of the solution procedure. This method must be applied to solve **non-linear** problems.

There are two classifications of direct integration: *explicit* and *implicit*. When a direct computation of the dependent variables can be made in terms of **known quantities**, the computation is said to be **explicit**. When the dependent variables are defined by **coupled sets of equations**, and either a matrix or iterative technique is needed to obtain the solution, the numerical method is said to be **implicit**.

There are several numerical methods as explained in some other books (e.g Chopra 2012) both explicit and implicit, however, in this chapter only Newmark integration method was explained.

4.3.1.2 Newmark Method

In 1959, N. M. Newmark developed a family of time-stepping methods to solve for second order differential equation in dynamic analysis based on the following equations:

$$\dot{u}_{i+1} = \dot{u}_{i} + [(1-\gamma)\Delta t]\ddot{u}_{i} + (\gamma\Delta t)\ddot{u}_{i+1}$$
(4.3.4a)
$$u_{i+1} = u_{i} + (\Delta t)\dot{u}_{i} + [(0.5-\beta)(\Delta t)^{2}]\ddot{u}_{i} + [\beta(\Delta t)^{2}]\ddot{u}_{i+1}$$
(4.3.4b)

The parameters β and γ define the variation of acceleration over a time step and determine the stability and accuracy characteristics of the method. Typical selection for γ is 1/2, and 1/6 $\leq \beta \leq$ 1/4 is satisfactory from all points of view, including that of accuracy. These two equations, combined with the equilibrium equation at the end of the time step, provide the basis for computing ui+1, \dot{u}_{i+1} , and

 \ddot{u}_{i+1} at time i + 1 from the known ui, \dot{u}_i , and \ddot{u}_i at time *i*. Iteration is required to implement these computations because the unknown \ddot{u}_{i+1} appears in the right side of Eq. (4.3.4).

For linear systems it is possible to modify Newmark's original formulation, however, to permit solution of Eqs. (4.3.4a) and (4.3.4b) without iteration. Before describing this modification, we demonstrate that two special cases of Newmark's method are the well-known constant average acceleration and linear acceleration methods.

4.3.1.3 Stability

Numerical procedures that lead to bounded solutions if the time step is shorter than some stability limit is called *conditionally stable procedures*. Procedures that lead to bounded solutions regardless of the time-step length are called unconditionally stable procedures. The average acceleration method is unconditionally stable. The linear acceleration method is stable if $\Delta t/Tn < 0.551$, and the central difference method is stable if $\Delta t/Tn < 1/\pi$. Obviously, the latter two methods are conditionally stable.

The stability criteria are not restrictive (i.e., they do not dictate the choice of time step) in the analysis of SDF systems because $\Delta t/Tn$ must be considerably smaller than the stability limit (say, 0.1 or less) to ensure adequate accuracy in the numerical results. Stability of the numerical method is important, however, in the analysis of MDF systems, where it is often necessary to use unconditionally stable methods.

4.3.1.4 Nonlinear Systems: Newmark's Method

In this section, Newmark's method described earlier for linear systems is extended to nonlinear systems. Recall that this method determines the solution at time i + 1 from the equilibrium condition at time i + 1, i.e., Eq. (4.3.1) for nonlinear systems. Because the resisting force (fs)_{i+1} is an implicit nonlinear function of the unknown ui+1, iteration is required in this method. This requirement is typical of implicit methods. It is instructive first to develop the Newton–Raphson method of iteration for static analysis of a nonlinear SDF system (refer to: Chopra 2012). The Newton-Raphson Algorithm for systems with several or many DoF's follows exactly the same procedure as the algorithm for SDoF systems. Only difference: Scalar values are replaced by the corresponding vectorial quantities. In most FE-analysis programs both Newton-Raphson Algorithms as well as other algorithms are typically combined in a general solver in order to obtain a successful convergence of the iteration process for many structural analysis problems. Steps of numerical calculation as shown in **Table 4.3-1**.

Table 4.3-1 Newmark's method: Non-Linear system (Chopra 2012)

Special cases (1) Average acceleration method ($\gamma = \frac{1}{2}, \beta = \frac{1}{4}$)

- (2) Linear acceleration method ($\gamma = \frac{1}{2}, \beta = \frac{1}{6}$)
- 1.0 Initial calculations
 - 1.1 State determination: $(f_S)_0$ and $(k_T)_0$.

1.2
$$\ddot{u}_0 = \frac{p_0 - c\dot{u}_0 - (f_S)_0}{m}$$
.

1.3 Select Δt .

1.4
$$a_1 = \frac{1}{\beta(\Delta t)^2}m + \frac{\gamma}{\beta\Delta t}c; \quad a_2 = \frac{1}{\beta\Delta t}m + \left(\frac{\gamma}{\beta} - 1\right)c; \text{ and}$$

 $a_3 = \left(\frac{1}{2\beta} - 1\right)m + \Delta t\left(\frac{\gamma}{2\beta} - 1\right)c.$

- 2.0 Calculations for each time instant, i = 0, 1, 2, ...
 - 2.1 Initialize j = 1, $u_{i+1}^{(j)} = u_i$, $(f_S)_{i+1}^{(j)} = (f_S)_i$, and $(k_T)_{i+1}^{(j)} = (k_T)_i$. 2.2 $\hat{p}_{i+1} = p_{i+1} + a_1 u_i + a_2 \dot{u}_i + a_3 \ddot{u}_i$.
- 3.0 For each iteration, j = 1, 2, 3...
 - 3.1 $\hat{R}_{i+1}^{(j)} = \hat{p}_{i+1} (f_S)_{i+1}^{(j)} a_1 u_{i+1}^{(j)}$.
 - 3.2 Check convergence; If the acceptance criteria are not met, implement steps 3.3 to 3.7; otherwise, skip these steps and go to step 4.0.

3.3
$$(\hat{k}_T)_{i+1}^{(j)} = (k_T)_{i+1}^{(j)} + a_1$$

- 3.4 $\Delta u^{(j)} = \hat{R}^{(j)}_{i+1} \div (\hat{k}_T)^{(j)}_{i+1}$
- 3.5 $u_{i+1}^{(j+1)} = u_{i+1}^{(j)} + \Delta u^{(j)}$.
- 3.6 State determination: $(f_S)_{i+1}^{(j+1)}$ and $(k_T)_{i+1}^{(j+1)}$.
- Replace j by j + 1 and repeat steps 3.1 to 3.6; denote final value as u_{i+1} .
- 4.0 Calculations for velocity and acceleration

$$4.1 \ \dot{u}_{i+1} = \frac{\gamma}{\beta \Delta t} (u_{i+1} - u_i) + \left(1 - \frac{\gamma}{\beta}\right) \dot{u}_i + \Delta t \left(1 - \frac{\gamma}{2\beta}\right) \ddot{u}_i.$$

$$4.2 \quad \ddot{u}_{i+1} = \frac{1}{\beta (\Delta t)^2} (u_{i+1} - u_i) - \frac{1}{\beta \Delta t} \dot{u}_i - \left(\frac{1}{2\beta} - 1\right) \ddot{u}_i.$$

5.0 *Repetition for next time step.* Replace i by i + 1 and implement steps 2.0 to 4.0 for the next time step.

4.3.2 Hysteresis Model

In structural analysis, Hysteretic can be define as:

- The dependence of the state of a system on its history.
- Plots of a single component of the moment often form a loop or hysteresis curve, where there are different values of one variable depending on the direction of change of another variable.
- The lag in response exhibited by a body in reacting to changes in the forces affecting it.

Many different hysteretic models have been proposed in the past trying to simulate the inelastic behavior of RC Structures, and in nowadays they are used to obtain Inelastic Earthquake Responses. There are several hysteretic modeled based on experimental observations that was introduced such as Takeda Model. The Response is mainly related with the Energy dissipation capacity of each hysteretic model and parameters are those which can influence on the shape (fatness and longness) of a hysteresis loop.

The Takeda hysteresis model was developed by Takeda, Sozen and Nielsen [1970], Otani [1981] and Kabeyasawa, Shiohara, Otani, Aoyama [1983] to represent the force-displacement hysteretic properties of RC structures. The Takeda model according to Otani (1981) includes (a) stiffness changes at flexural cracking and yielding, (b) rules for inner hysteresis loops inside the outer loop, and (c) unloading stiffness degradation with deformation. The hysteresis rules are extensive and comprehensive (**Figure 4.3-1**). In this chapter the modified Takeda Model [Ref: Kabeyasawa, Shiohara, Otani, Aoyama; May 1983.

Figure 4.3-1 Takeda hysteresis model – Ref: Hysteresis Models of Reinforced Concrete for Earthquake Response Analysis by Otani [May 1981]

The main difference with the other models is that it has Hysteresis rules for inner Hysteresis loops inside the outer loop and also it has unloading stiffness degradation as follows:

$$K_{RO} = \left(\frac{F_y + F_c}{D_y + D_c}\right) \cdot \left(\frac{D_y}{D_m}\right)^{\beta} \tag{4.3.5}$$

where,

1

KRO	:	Unloading stiffness of the outer loop
FC	:	First yield force in the region opposite to unloading point
FY	:	Second yield force in the region to which unloading point belongs
DC	:	First yield displacement in the region opposite to unloading point
DY	:	Second yield displacement in the region to which unloading point belongs
DM	:	Maximum deformation in the region to which unloading point belongs
В	:	Constant for determining the unloading stiffness of the outer loop

If the sign of load changes in the process, the coordinates progress towards the maximum deformation point on the skeleton curve in the region of the proceeding direction. If yielding has not occurred in the region, the coordinates continue to progress without changing the unloading stiffness until the load reaches the first yield force. Upon reaching the first yield force, it progresses towards the second yield point.

Inner loop is formed when unloading takes place before the load reaches the target point on the skeleton curve while reloading is in progress, which takes place after the sign of load changes in the process of unloading. Unloading stiffness for inner loop is determined by the following equation.

$$K_{RI} = \gamma K_{RO} \tag{4.3.6}$$

where:

KRI	:	Unloading stiffness of inner loop
KRO	:	Unloading stiffness of the outer loop in the region to which the start point
		of unloading belongs.
γ	:	Unloading stiffness reduction factor for inner loop

In the above equation, β =0.0 for calculating K_{RO} and γ =1.0 for calculating K_{RI} are set if the second yielding has not occurred in the region of unloading. In the case where the sign of load changes in the process of unloading in an inner loop, the load progresses towards the maximum deformation point, if it exists on the inner loop in the region of the proceeding direction. If the maximum deformation point does not exist on the inner loop, the load directly progresses towards the maximum deformation point on the skeleton curve. If the maximum deformation point, which belongs to the outermost inner loop, alloops, it progresses towards the maximum deformation point, which belongs to the outermost inner loop. Also, if loading continues through the point, it progresses towards the maximum deformation point on the skeleton curve.

4.3.2.1 Relationships between Force-Displacement (F- Δ) and Moment-Curvature (M-Ø)

In this section the relationship between Force-Displacement (F- Δ) and Moment-Curvature (M- \emptyset) is explained.

By specifying a plastic hinge length, Lp, increasing curvature demands on a SDOF cantilever system with height H can be translated to an equivalent displacement response in accordance with Equation (4.3.7).

$$D_{t} = D_{e} + D_{p}$$

$$= \frac{\phi_{e} \times H^{2}}{3} + (\phi_{t} - \phi_{e}) \times L_{p}H \qquad (4.3.7)$$

where De is the elastic displacement component, Dp is the plastic deformation component associated with the inelastic rotation of a plastic hinge, $\emptyset t$ is the total curvature at the plastic hinge location and $\emptyset e$ is the elastic curvature. Note that the ratio of the total displacement to the yield displacement (i.e. the displacement ductility demand) can be expressed for a cantilever in terms of the curvature ductility demand by Equation (4.7).

$$\frac{D_{t}}{D_{y}} = \mu_{\Delta} = 1 + 3(\mu_{\phi} - 1) \times \frac{L_{p}}{H} \qquad (4.3.8)$$

After reaching a total displacement of Δt , the Takeda model instructs the structure to unload with a reduced stiffness given by Equation (4.4).

If we assume, for simplicity, that there is no strain hardening and note that the Takeda model is specified for NLTHAs in a Moment-Curvature environment, then the elastic curvature recovered in unloading the structure from a total displacement demand of Dt is given by Equation (4.3.9).

$$\phi_{un} = \phi_t - \frac{F}{K_{RO}} \tag{4.3.9}$$

The ratio of the elastic displacement recovered in unloading to the yield displacement of a cantilever is therefore given by Equation (4.3.10).

$$\frac{D_{un}}{D_{y}} = \frac{\phi_{un}H^{2}}{3}\frac{3}{\phi_{y}H^{2}} = \mu_{\phi}^{\alpha} \quad$$
(4.3.10)

Dividing Equation (4.3.7) by Equation (4.3.10), we obtain Equation (4.10) which expresses the ratio of the total displacement demand to the unloading displacement as a function of the curvature ductility demand, the ratio Lp/H, and the alpha factor.

$$\frac{D_{t}}{D_{un}} = \frac{1}{\mu_{\phi}^{\alpha}} + 3(\mu_{\phi} - 1)\frac{L_{p}}{H\mu_{\phi}^{\alpha}} \quad \dots \tag{4.3.11}$$

The inelastic demand estimations in the direct displacement-based design approach developed by *Priestley et al.* Based on regression analysis, *Priestley et al.* calibrated an individual set of parameters to be used with the above equations for each of the considered hysteretic models. These parameters are given in Error! Reference source not found. for selected hysteretic models.

Note that for the parameter λ two values are given for each hysteretic rule. The upper value is to be used if a constant elastic viscous damping coefficient is considered appropriate in the original inelastic model, whereas the lower value corresponds to tangent stiffness proportional damping in the inelastic model. The positive λ value for the constant damping model results in an increasing damping ratio $\xi el_{eff(\mu \Delta)}$ with increasing ductility demand μ_{Δ} . It thus (partly) compensates for the decreasing critical damping coefficient ccr, $_{eff(\mu \Delta)}$. In contrast, the negative λ value for the tangent stiffness proportional damping damping model yields a decreasing damping ratio $\xi el_{,eff(\mu \Delta)}$ as the tangent stiffness proportional damping coefficient decreases stronger with ductility than the effective critical damping coefficient.

According to *Priestley et al. 2007* refer to his book "*Displacement-Based Seismic Design of Structures*" For reinforced concrete piers, the "thin" Takeda model may be considered most representative. The fat Takeda having higher energy dissipation is rather appropriate for RC beams and frame structures.

– "Thin" Takeda hysteresis with a post-yield stiffness ratio of $\gamma = 0.05$ unloading stiffness parameter $\alpha = 0.5$ and reloading stiffness parameter $\beta = 0$.

– "Fat" Takeda hysteresis with a post-yield stiffness ratio of $\gamma = 0.05$ unloading stiffness parameter $\alpha = 0.3$

$$\begin{aligned} \xi_{eq,lot}\left(\mu_{\lambda}, T_{eff}\right) &= \xi_{el,eff}\left(\mu_{\lambda}\right) + \xi_{eq,lyst}\left(\mu_{\lambda}, T_{eff}\right) \\ \xi_{el,eff}\left(\mu_{\lambda}\right) &= \xi_{el,0} \cdot \mu_{\lambda}^{\lambda} \end{aligned}$$
(4.3.12)
$$\xi_{eq,lyst}\left(\mu_{\lambda}, T_{eff}\right) &= a \cdot \left(1 - \frac{1}{\mu_{\lambda}^{b}}\right) \cdot \left(1 + \frac{1}{\left(T_{eff} + c\right)^{d}}\right) \end{aligned}$$

Table 4.3-2 Parameter λ and parameters a, b, c, and d for the use of equation (4.11) for various hysteretic models according to Priestley et. al, 2007

		Parameters					
Hysteretic Model	Elastic Viscous Damping Model	Eq. (4.32)	Equation (4.33)				
	Damping	λ[-]	a [-]	b [-]	c [-]	d [-]	
Elasto-Plastic	constant	0.127	0.224	0.336	-0.002	0.250	
r = 0	tang. stiff. prop.	-0.341				0.250	
Takeda "Fat"	constant	0.312	0.205	0.402	0.700	1.462	
$r = 0.05, \alpha = 0.3, \beta = 0.6$	tang. stiff. prop.	-0.313	0.305	0.492	0.790	4.405	
Takeda "Thin"	constant	0.340	0.215	0.642	0.824	6.444	
$r = 0.05, \alpha = 0.5, \beta = 0$	tang. stiff. prop.	-0.378				0.444	
Ramberg-Osgood	constant	-0.060	0.280	0.622	0.956	6 4 6 0	
$r_{RO} = 7$	tang. stiff. prop.	-0.617	0.289	0.622	0.856	0.400	

4.3.2.2 Material Non-Linearity

Concrete material nonlinearity is incorporated into analysis using a nonlinear stress-strain relationship **Figure 4.3-2** shows idealized stress-strain curves for unconfined and confined concrete in uniaxial compression. Tests have shown that the confinement provided by closely spaced transverse reinforcement can substantially increase the ultimate concrete compressive stress and strain. The confining steel prevents premature buckling of the longitudinal compression reinforcement and increases the concrete ductility. Extensive research has been made to develop concrete stress-strain relationships (Hognestad, 1951; Popovics, 1970; Kent and Park, 1971; Park and Paulay, 1975; Wang and Duan, 1981; Mander et al., 1988a and 1988b; Hoshikuma et al., 1997). AASHTO Guide Specifications for LRFD Seismic Bridge Design 2011 recommended the use of Mander stress-strain model for confined concrete.

Figure 4.3-2 Idealized stress-strain curves of concrete in uniaxial compression

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

4.3.2.3 Confined Concrete – Mander's Model

Analytical models describing the stress-strain relationship for confined concrete depend on the confining transverse reinforcement type (such as hoops, spiral, or ties) and shape (such as circular, square, or rectangular). Some of those analytical models are more general than others in their applicability to various confinement types and shapes. A general stress-strain model (**Figure 4.3-3**) for confined concrete applicable (in theory) to a wide range of cross sections and confinements was proposed by Mander et al. (1988a and 1988b) and has the following form:

$$fc = \frac{f_{cc}(\varepsilon_c / \varepsilon_{cc})r}{r - 1 + (\varepsilon_c / \varepsilon_{cc})^r} \qquad (4.3.13)$$

$$\varepsilon_{cc} = \varepsilon_{co} \left(1 + 5 \left(\frac{f_{cc}}{f_{co}} - 1 \right) \right) \qquad (4.3.14)$$

$$r = \frac{E_c}{E_c - E_{\text{sec}}} \tag{4.3.15}$$

$$E_{\rm sec} = \frac{f_{cc}}{E_c} \qquad (4.3.16)$$

where $f_{cc}^{'}$ and \mathcal{E}_{cc} are peak compressive stress and corresponding strain for confined concrete. $f_{cc}^{'}$ and \mathcal{E}_{cu} , which depend on the confinement type and shape, are calculated as follows:

(1) Confined Peak Stress

1. For concrete circular section confined by circular hoops or spiral (Figure 4.3-4)

Figure 4.3-3 Stress-strain curves of concrete-Mander model

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

$$f_1' = \frac{1}{2} K_e \rho_s f_{yh} \qquad (4.3.17)$$

$$K_{e} = \begin{cases} (1 - s'/2d_{s})^{2} / (1 - \rho_{cc}) \\ (1 - s'/2d_{s}) / (1 - \rho_{cc}) \end{cases}$$
For Circular hoops
For Circular Spiral (4.3.18)
$$4A_{sp}$$

$$\rho_s = \frac{4A_{sp}}{d_s s} \tag{4.3.19}$$

where f_1 is the effective lateral confining pressure, K_e confinement effectiveness coefficient, f_{yh} the yield stress of the transverse reinforcement, s' the clear vertical spacing between hoops or spiral; s the center to center spacing of the spiral or circular hoops, ds centerline diameter of spiral or hoops circle, ρ_{cc} the ratio of the longitudinal reinforcement area to the cross-section core area, ρ_s is the ratio of the transverse confining steel volume to the confined concrete core volume, and A_{sp} the bar area of transverse reinforcement.

Figure 4.3-4 Confined core for hoop reinforcement

 For rectangular concrete section confined by rectangular hoops (Figure 4.3-6) The rectangular hoops may produce two unequal effective confining pressures f'_{1x} and f'_{1y} in the principal x- and y-direction defined as follows:

$$f_{1x}^{'} = K_e \rho_x f_{yh}$$
 (4.3.20)
 $f_{1y}^{'} = K_e \rho_y f_{yh}$ (4.3.21)

$$\rho_x = \frac{A_{xx}}{sd_c} \qquad (4.3.23)$$

$$\rho_{y} = \frac{A_{sy}}{sb_{c}} \qquad (4.3.24)$$

where f_{yh} is yield strength of transverse reinforcement; $w_{i_}$ the ith clear distance between adjacent longitudinal bars; b_c and dc core dimensions to centerlines of hoop in x and y direction (where $b \ge d$), respectively; A_{sx} and A_{sy} are the total area of transverse bars in x and y direction, respectively.

Once f'1x and f'1y are determined, the confined concrete strength f'_{cc} can be found using the chart shown in **Figure 4.3-5** with f'_{1x} being greater or equal to f'_{1y} . The chart depicts the general solution of the "five-parameter" multi-axial failure surface described by William and Warnke (1975).

Figure 4.3-5 Peak stress of confined concrete. (Chen et. al 2014)

Note that setting $f'_1 = 0.0$ in Equations 4.3.17, 4.2.20, and 4.3.21 will produce Mander's expression for unconfined concrete. In this case and for concrete strain $\varepsilon_c > 2$ ε_{co} , a straight line that reaches zero stress at the spalling strain ε_{sp} is assumed.

4.3.2.4 Confined Concrete Ultimate Compressive Strain

Defining the ultimate compressive strain as the longitudinal strain at which the first confining hoop fracture occurs, and using the energy balance approach, Mander et al. (1984) produced an expression for predicting the ultimate compressive strain that can be solved numerically. A conservative and simple equation for estimating the confined concrete ultimate strain is given by Priestley et al. (1996).

$$\varepsilon_{cu} = 0.004 + \frac{1.4\rho_s f_{yh}\varepsilon_{su}}{f_{cc}} \qquad (4.3.25)$$

where ε_{su} is the steel strain at maximum tensile stress for rectangular section $\rho_s = \rho_x + \rho_y$ as defined previously. Typical values for ε_{cu} range from 0.012 to 0.05. Equation 4.3.25 is formulated for confined sections subjected to axial compression. It is noted that according to (Chen and Duan 2014), when Equation 4.3.26 is used for section in bending or combined bending and axial then it tends to be conservative by at least 50%.

Figure 4.3-6 Confined core for rectangular hoop reinforcement (Chen et.al 2014)

4.3.2.5 Structural Steel and Reinforcement

For structural steel and non-prestressed steel reinforcement, its stress–strain relationship can be Idealized as four parts: elastic, plastic, strain hardening, and softening as shown in **Figure 4.3-7**. The simplest multilinear expression is

ſ

$$f_{s} = \begin{cases} E_{s}\varepsilon_{s} & 0 \leq \varepsilon_{s} \leq \varepsilon_{y} \\ f_{y} & \varepsilon_{sy} < \varepsilon_{s} \leq \varepsilon_{sh} \\ f_{y} + \frac{\varepsilon_{s} - \varepsilon_{sh}}{\varepsilon_{su} - \varepsilon_{sh}} (f_{u} - f_{y}) & \varepsilon_{sh} < \varepsilon_{s} \leq \varepsilon_{su} \\ f_{u} \bigg[1 - \frac{\varepsilon_{s} - \varepsilon_{su}}{\varepsilon_{sb} - \varepsilon_{su}} (f_{su} - f_{sb}) \bigg] & \varepsilon_{su} < \varepsilon_{s} \leq \varepsilon_{sb} \end{cases}$$

$$(4.3.26)$$

where fs and ε_s is stress of strain in steel; Es the modulus of elasticity of steel = 29,000 ksi (200, 000 MPa); fy and ε_y yield stress and strain; ε_{sh} hardening strain; fsu and ε_{su} maximum stress and corresponding strain; and fsb and ε_{sb} rupture stress and corresponding strain.

For the reinforcing steel, the following nonlinear form can also be used for the strain-hardening portion (Chai et al., 1990):

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

For both strain-hardening and softening portions, Holzer et al. (1975) proposed the following expression:

The nominal limiting values for stress and strain proposed by Holzer et al. (1975) as shown:

Table 4.3-3 Nominal Limiting Values for Structural Steel Stress–Strain Curves (Chen et.al 2014)

∫ _y ksi (MPa)	$f_{\rm u}$ ksi (MPa)	ε _y	$\epsilon_{ m sh}$	ϵ_{su}	ϵ_{sb}
40 (280)	80 (550)	0.00138	0.0230	0.140	0.200
60 (420)	106 (730)	0.00207	0.0060	0.087	0.136
75 (520)	130 (900)	0.00259	0.0027	0.073	0.115

4.3.3 Plastic Hinges

The equivalent plastic hinge length, L_p as defined in FHWA Retrofitting Manual 2011 is given by semiempirical equation below:

$$L_p = 0.08L + 4400\varepsilon_v d_b$$
 in mm (4.3.33)

where db and ε_y are the diameter and yield strain of the longitudinal tension reinforcement

respectively, and L is the shear span or effective height. Another approached of estimating the length of plastic hinge (Priestley et al. 2007) is to use a simplified approach based on the concept of a "plastic hinge", of length L_p , over which strain and curvature are considered to be equal to the maximum value at the column base. The plastic hinge length incorporates the strain penetration length L_{sp} as shown in **Figure 4.3-8**. Further, the curvature distribution higher up the column is assumed to be linear, in accordance with the bilinear approximation to the moment-curvature response. This tends to compensate for the increase in displacement resulting from tension shift, and, at least partially, for shear deformation. The strain penetration length, L_{sp} may be taken as:

$$L_{sp} = 0.022 f_{ye} d_{bl} f_{ye}$$
 in Mpa (4.3.34)

Where fye and dbl are the expected yield strength and diameter of the longitudinal reinforcement.

Figure 4.3-8 Idealization of curvature distribution – [Ref: Priestly, M.J.N. Calvi G.M. Kowalsky M.J. (2007)]

and the plastic hinge length of column, Lp is given by:

$$L_p = kL_c + L_{sp} \ge 2L_{sp}$$
 (4.3.35)

where:

$$k = 0.2 \left(\frac{f_u}{f_y} - 1\right) \le 0.08 \quad \dots \tag{4.3.36}$$

and where Lc is the length from the critical section to the point of contra-flexure in the member. Equation (4.3.36) emphasis the importance of the ratio of ultimate tensile strength to yield strength of the flexural reinforcement. If this value is high, plastic deformations spread away from the critical section as the reinforcement at the critical section strain-hardens, increasing the plastic hinge length. If the reinforcing steel has a low ratio of ultimate to yield strength, plasticity concentrates close to the critical section, resulting in a short plastic hinge length.

4.3.4 Multiple Support Excitation

In a structure with multiple supports, different time history forcing functions in terms of ground acceleration can be applied to different supports. In cases of long-span bridges (suspension bridge or cable stayed bridge), when the distance between the supports of a substructure is large, arrival time of seismic excitation varies. This effect can be considered using the "Multiple Support Excitation" function. The response of the bridge under multiple-support ground motions is generally different from those excited by identical support ground motion, because multiple-support ground motions may excite vibration modes not captured by using uniform support ground motions, and vice versa. The relative deviation is more severe for longer spans.

For the analysis of such systems the formulation of Section 4.3.2 is extended to include the degrees of freedom at the supports (**Figure 4.3-9**). The displacement vector now contains two parts: (1) **u***t* includes the *N* DOFs of the superstructure, where the superscript *t* denotes that these are total

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding) displacements; and (2) \mathbf{u}_g contains the N_g components of support displacements. The equation of dynamic equilibrium for all the DOFs is written in partitioned form:

Support DOF: \mathbf{u}_{g}

Figure 4.3-9 Definition of superstructure and support DOFs. (Chopra 2012)

In Eq. (4.3.37) the mass, damping, and stiffness matrices can be determined from the properties of the structure using the procedures presented earlier in this chapter, while the support motions $u_g(t)$, $\dot{u}_g(t)$, $\ddot{u}_g(t)$ must be specified. It is desired to determine the displacements **u**t in the superstructure DOF and the support forces **p**g.

To write the governing equations in a form familiar from the earlier formulation for a single excitation, then:

$$\begin{cases} u^{i} \\ u_{g} \end{cases} = \begin{cases} u^{s} \\ u_{g} \end{cases} + \begin{cases} u \\ 0 \end{cases}$$
(4.3.38)

In this equation $\mathbf{u}s$ is the vector of structural displacements due to static application of the prescribed support displacements $\mathbf{u}g$ at each time instant. The two are related through

 $\begin{bmatrix} k & k_g \\ k_g^T & k_{gg} \end{bmatrix} \begin{Bmatrix} u^s \\ u_g \end{Bmatrix} = \begin{Bmatrix} 0 \\ p_s^s \end{Bmatrix} \quad \dots \qquad (4.3.39)$

where P_s^s are the support forces necessary to statically impose displacements ug that vary with time; obviously, u_s varies with time and is therefore known as the vector of quasi-static displacements.

With the total structural displacements split into quasi-static and dynamic displacements, Eq. (4.3.38), we return to the first of the two partitioned equations (4.3.38):

$$\mathbf{m}\ddot{\mathbf{u}}^{t} + \mathbf{m}_{g}\ddot{\mathbf{u}}_{g} + \mathbf{c}\dot{\mathbf{u}}^{t} + \mathbf{c}_{g}\dot{\mathbf{u}}_{g} + \mathbf{k}\mathbf{u}^{t} + \mathbf{k}_{g}\mathbf{u}_{g} = \mathbf{0} \quad \dots \quad (4.3.40)$$

Substituting Eq. (4.3.38) and transferring all terms involving \mathbf{u}_g and \mathbf{u}_s to the right side leads to

$$m\ddot{u} + c\dot{u} + ku = p_{eff}(t)$$
 (4.3.41)

where the vector of effective earthquake forces is

$$\mathbf{p}_{\text{eff}}(t) = -(\mathbf{m}\ddot{\mathbf{u}}^s + \mathbf{m}_g\ddot{\mathbf{u}}_g) - (\mathbf{c}\dot{\mathbf{u}}^s + \mathbf{c}_g\dot{\mathbf{u}}_g) - (\mathbf{k}\mathbf{u}^s + \mathbf{k}_g\mathbf{u}_g) \qquad (4.3.42)$$

This effective force vector can be rewritten in a more useful form. The last term drops out because Eq. (4.3.39) gives

$$\mathbf{k}\mathbf{u}^s + \mathbf{k}_g \mathbf{u}_g = \mathbf{0} \qquad (4.3.43)$$

This relation also enables us to express the quasi-static displacements u_s in terms of the specified support displacements u_g :

$$u^{s} = Iu^{g}$$
 $I = -k^{-1}k_{g}$ (4.3.44)

We call I the *influence matrix* because it describes the influence of support displacements on the structural displacements. Substituting Eqs. (4.3.43) and (4.3.44) in Eq. (4.3.42) gives

$$p_{eff}(t) = -(mI + m_g)\ddot{u}_g(t) - (cI + c_g)\dot{u}_g(t) \qquad (4.3.45)$$

If the ground (or support) accelerations $\ddot{u}_g(t)$ and velocities $\dot{u}_g(t)$ are prescribed, $p_{eff}(t)$ is known from Eq. (4.3.45), and this completes the formulation of the governing equation [Eq. (4.3.41)].

Simplifying eqn. (4.3.45) since in practical application if the damping matrix are proportional to the stiffness matrix the damping term may approximately zero, hence,

$$p_{eff}(t) = -m I \ddot{u}_{g}(t)$$
 (4.3.47)

And for structures structure with multiple support motions

$$p_{eff}(t) = -\sum_{l=1}^{N_g} m I_l \ddot{u}_{gl}(t) \qquad (4.3.48)$$

The *l*th term in Eq. (4.3.47) that denotes the effective earthquake forces due to acceleration in the *l*th support DOF is of the same form for structures with single support (and for structures with identical motion at multiple supports). The two cases differ in an important sense, however: In the latter case, the influence vector can be determined by kinematics, but *N* algebraic equations [Eq. (4.3.47)] are solved to determine each influence vector I₁ for multiple-support excitations.
CHAPTER 5: ANALYSIS EXAMPLE

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Chapter 5 Analysis Example

This chapter consist of basic example of the seismic analysis of continuous bridge subject to earthquake loadings. Both response spectrum method and elastic time history analysis method has been employed in this exercise. The outline of the analysis will be as follows:

Figure 5-1 Outline of Analysis

5.1 Analysis Modelling

Quality of mathematical model as well as loading model according to actual condition and configuration based on particular guidelines is necessary.

The criteria for the seismic analysis and design of example bridge was principally conducted in accordance with provisions of Bridge Seismic Design Specifications (BSDS). In case of necessity of additional design criteria, basically, DGCS 2015 and AASHTO LRFD (6th edition) was referred to.

5.1.1 Structural Conditions

Structural conditions were set as follows. In regard with this, bridge profile and superstructure cross section are shown in **Figure 5.1-1**.

- Bridge type: 3 span continuous AASHTO girders Type V
- Bridge length and span length: 35.0+35.0+35.0 = 105.0 (m)
- Total road width: 1.5 + 0.6 + 3.15 + 3.15 + 0.6 + 1.5 = 10.5 (m)
- Skew angle: 90 degrees (non-skewed straight bridge)
- Pier type: Single circular column
- Abutment type: Cantilever type
- Foundation type: Cast-in-place concrete pile (CCP) foundation (φ1200)
- Centroid of the superstructure: 1.8m from the column top (application point of superstructure mass)

- Bearing Restraint Condition: Longitudinal direction: M F F M (A1, P1, P2, and A2, respectively)

Transverse direction: F F F F (A1, P1, P2, and A2, respectively)

Note: M: movable, F: fixed

Figure 5.1-1 Bridge profile and Superstructure cross section

5.1.2 Bridge Importance (Bridge Operational Classification) (BSDS-Article 3.2)

Example Bridge is classified as "Other Bridge", as shown in **Table 5.1-1**. Considering the operational classification requirement, following two (2) design conditions were set. Design seismic force "An earthquake with 1,000-year return period" was applied to the bridge seismic design force in consideration of an active fault near the bridge and the location of the bridge (in Metro Manila) Response Modification Factors for Substructures (R-factor) A response modification factor (hereafter, called R-factor) for "Other Bridges" was applied to design of pier columns. As a relationship between "R-factor" and "Operational Category" is shown in **Table 5.1-2**, "**R=3.0**" was selected for design of single columns.

Operational	Performance
Classification (OC)	
OC-I	- Bridges that must remain open to all traffic after the design earthquake.
(Critical Bridge)	- Other bridges required by DPWH to be open to emergency
	vehicles and vehicles for security/defense purposes immediately
	after an earthquake larger than the design earthquake.
	- Bridges that should, as a minimum, be open to emergency
OC-II	vehicles and for security/defense purposes within a short period
(Essential Bridge)	after the design earthquake. i.e. 1,000-year return period event.
OC-III	- All other bridges not required to satisfy OC-I or OC-II
(Other Bridge) (Selected)	performance

Table 5.1-1 Operational Classification of Bridges

Table 5.1-2 Response	Modification	Factors, R
----------------------	--------------	------------

Sub structures	Operational Category				
Substructure	Critical	Essential	Others		
Wall-type piers – larger dimension	1.5	1.5	2.0		
Reinforced concrete pile bents					
Vertical piles only	1.5	2.0	3.0		
• With batter piles	1.5	1.5	2.0		
Single columns	1.5	2.0	3.0		
Steel or composite steel and concrete pile bents					
Vertical piles only	1.5	3.5	5.0		
• With batter piles	1.5	2.0	3.0		
Multiple column bents	1.5	3.5	5.0		

Pertaining to seismic performance of the bridge, seismic design of sample Bridge was conducted, targeting seismic performance level 3 (SPL-3) against large earthquakes with a 1000-year return period. The definition of SPL-3 is shown in **Table 5.1-3**.

Fortherabe Crowned Motion	Bridge Operational Classification					
Earthquake Ground Motion (EGM)	OC-I (Critical Bridges)	OC-II (Essential Bridges)	ssification OC-III (Other Bridges) SPL-1 (Keep the bridge sound function; resist seismic forces within elastic limit) SPL-3 (May suffer damage but should not cause collapse of bridge or any of its structural			
Level 1 (Small to moderate earthquakes which are highly probable during the bridge service life)	SPL-1 (Keep the bridge sound function; resist seismic forces within elastic limit)	SPL-1 (Keep the bridge sound function; resist seismic forces within elastic limit)	SPL-1 (Keep the bridge sound function; resist seismic forces within elastic limit)			
Level 2 (Large earthquakes with a 1,000-year return period)	SPL-2 (Limited seismic damage and capable of immediately recovering bridge functions without structural repair)	SPL-2 (Limited seismic damage and capable of recovering bridge function with structural repair within short period)	SPL-3 (May suffer damage but should not cause collapse of bridge or any of its structural elements)			

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

5.1.3 Material Properties

5.1.3.1 Material Properties shown in Table 5.1-4 were applied in the design.

Material	Strength	Remarks
Concrete	fc'= 41.0 (MPa); Compressive Strength at 28 days	- Ec= $0.043*\gamma c^{1.5*}\sqrt{fc'}$ = 31,000 (MPa) (rounded down) Note: γc = 2350 (kg/m3): unit weight of concrete - Applied to PC I-girders
Material Concrete Rebar	fc'= 28.0 (MPa); Compressive Strength at 28 days	 Ec= 4800 √fc' = 25,000 (MPa) (rounded down) Applied to all the substructure members and deck slab
Rebar	Fy= 414 (N/mm2); Grade60 steel	 Applied to all the substructure members Applicable diameter: D16, D20, D22, D25, D28, D32, D36

5.1.3.2 Unit Weight

The following unit weights were applied in the design.

- Reinforced concrete: $\gamma c= 24.0$ (kN/m3); rounded up for modification
- Water: $\gamma w= 10.0 (kN/m3)$
- Soil (wet): γt = (result of soil tests) (kN/m3)
- Soil (saturated): γ sat= γ t+1.0 (kN/m3)
- Soil (backfill): $\gamma s= 19.0 (kN/m3)$

5.1.4 Ground Conditions (BSDS-Article 3.5.1)

(1) Outline of Ground Conditions

The ground of the bridge site consists of seven (7) types of layers. Out of the seven layers, Guadalupe Formation (GF), which is classified as soft rock, has been selected as bearing layer of the site. Ground profile and soil parameters are shown in **Figure 5.1-2**

Figure 5.1-2 Geological	Profile and	Soil Parameters
-------------------------	-------------	------------------------

(2) Soil Type Classification

Ground types of the bridge site was classified as "Ground Type-II" in accordance with criteria defined in **Table 5.1-5**, in which ground characteristic value, T_G , defined by the following equation, was used as evaluation index **Figure 5.1-3** shows detail of the evaluation at two (2) boring locations (BH-01 and BH-02).

$$T_G = 4 \sum_{i=1}^n \frac{H_i}{V_{si}}$$

where,

T_G : Characteristic value of ground (s)

Hi : Thickness of the i-th soil layer (m)

- V_{si} : Average shear elastic wave velocity of the i-th soil layer (m/s)
 - i : Number of the i-th soil layer from the ground surface when the ground is classified into "n (No.) layers" from the ground surface to the surface of the base ground surface for seismic design.

Table 5.1-5 Ground Types (Site Class) for Seismic Design

	Ground Type	Characteristic Value of Ground, T _G (s)
Type-I	Good diluvial ground and rock	$T_{G} < 0.2$
Type-II	Diluvial and alluvial ground not belonging to either Type-III or Type-I ground	$0.2 \leqq T_G < 0.6$
Type-III	Soft ground and alluvial ground	$0.6 \leq T_G$

BH-01	l						BH-02	2										
Lay	yer	Layer thickness	N-value	Vsi (m/s)	Hi/Vsi	Hi/Vsi Lay (s) Name		i/Vsi		Layer		Layer		Layer		N-value	Vsi (m/s)	Hi/Vsi
Name	Туре	Hi (m)		(11/8)	(8)			Туре	Hi (m)		(11/8)	(8)						
F	Clay	4.0	37.7	292.4	0.0137		F	Clay	3.0	22.7	283.1	0.0106						
Ac1	Clay	4.0	8.7	205.7	0.0194		Ac1	Clay	5.0	7.0	191.3	0.0261						
As2	Sand	2.0	17.7	208.5	0.0096		As2	Sand	4.0	45.7	286.0	0.0140						
Ac2	Clay	4.0	35.3	292.4	0.0137		Ac2	Clay	7.0	26.3	292.4	0.0239						
GFw	Rock	8.0	44.5	283.5	0.0282		GFw	Rock	4.0	22.7	283.1	0.0141						
$T_G = 4 * \Sigma (H/V_S)$ 0.338		0.338				T _G =	=4*Σ(H	/Vs)	0.355									
			Soil Type	e	Type-II					Soil Type	2	Type-II						
						-												
Soil	type	Defin	ition				Soil	type	Defin	ition								
Тур	pe-I	T _G <	0.2				Type-I		T _G <	0.2								
Тур	e-II	0.2≤T	_G <0.6	***			Type-II		0.2≤T	₃ <0.6	••							
Тур	e-III	0.6≤	T _G				Тур	e-III	0.6	T _G								

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

5.2 Response Spectrum Analysis

Response spectra were used to represent the seismic demand on structures due to a ground motion record and **design spectra** were used for the seismic design of structures.

5.2.1 Design Acceleration Response Spectra

BSDS 3.4.1 General Procedure

(1) The General Procedure shall use the peak ground acceleration coefficient (*PGA*) and the short and long-period spectral acceleration coefficients (*SS* and *S1* respectively) to calculate the design response spectrum as specified in Article 3.6.

The values of *PGA*, *SS* and *S1* shall be determined from the acceleration coefficient contour maps of Figures 3.4.1-1 to 3.4.1-3 for the Level 1 Earthquake Ground Motion and Figures 3.4.1-4 to 3.4.1-6 for Level 2 Earthquake Ground Motion of this Section for the entire Philippine archipelago and from Appendix 3A and 3B for the regional level acceleration coefficient contour maps as appropriate, or from site specific ground motion maps approved by the DPWH or the Owner.

(2) For sites located between two contour lines, the higher value of the two-contour line shall be taken as the coefficient value.

(3) The effect of ground type (site class) on the seismic hazard shall be as specified in Article 3.5.

(1) Identification of Acceleration Coefficients

By examination of acceleration contour maps for 1000-year return period earthquakes, specific values of three (3) acceleration coefficients were identified as PGA= 0.6, Ss= 1.20, and S_1 = 0.45, respectively, as shown in **Figure 5.2-1**.

Figure 5.2-1 Acceleration Contour Maps

(2) Determination of Site Factors

Site factors of each acceleration coefficient were determined as Fpga= 0.88, Fa= 0.92, and Fv= 1.55, respectively, as shown in **Figure 5.2-2**.

Figure 5.2-2 Site Factors

(3) Formulation of Design Acceleration Response Spectrum

The five-percent-damped-design response spectrum was formulated by the following two (2) steps, as shown in **Figure 5.2-3**

- Step.1: Calculate and plot the coordinates of the following points in the graph. (0, Fpga*PGA), (0.2*Ts, Fa*Ss), (0.2, Fa*Ss), (S_{D1}/S_{DS}, Fa*Ss), (1.0, Fv*S₁)
- PGA : peak horizontal ground acceleration coefficient
- Ss : 0.2-sec period spectral acceleration coefficient
- S_1 : 1.0-sec period spectral acceleration coefficient
- Fpga : site coefficient for peak ground acceleration
- Fa : site coefficient for 0.2-sec period spectral acceleration
- Fv : site coefficient for 1.0-sec period spectral acceleration
- Step.2: Form spectrum by connecting the plotted points with the following two (2) formulas.
 - Csm= As+(SDS-As)(Tm/T0) (if $0 \le Tm \le Ts$)
 - Csm= SD1/T (if Ts \leq Tm

Figure 5.2-3 Design Acceleration Response Spectrum for the Design

5.2.2 Analysis Requirements and Physical Modeling

(1) Seismic Performance Zone (BSDS-Article 3.7)

Since " S_{D1} " of the bridge site was 0.698 (g), seismic performance zone (SZ) of the site was categorized as SZ-4, as shown in **Table 5.2-1**.

Acceleration Coefficient, S _{D1}	Seismic Zone] ,	
$S_{D1} \le 0.15$	SZ-1	C _{sm}	
$0.15 < S_{\rm D1} \le 0.30$	SZ-2	(σ) $S_{a=S_{D}/T}$ $S_{a=S_{D}/T}$	
$0.30 < S_{\rm D1} \le 0.50$	SZ-3	$S_{D1} = 0.04$ $T_{r=0.21s}$ $T_{s=S_{D1}/S_{Ds}}$	
$0.50 < S_{D1}$	SZ-4		Tm (s)

Table 5.2-1 Seismic Performance Zone

(2) Analysis Requirements (for Multi-span Bridges) (BSDS-Article 3.2)

1) Regular Bridge Requirements

Sample Bridge satisfied all the regular bridge requirements shown in **Table 5.2-2**. The detail of requirement assessment is as follows.

- Number of spans: 3
- Bridge skew angle: 90 degrees
- Maximum span length ratio: 1.0:1.0
- Maximum pier stiffness ratio: 1.0:1.0

Parameter	Value				
Number of Spans	2	3	4	5	6
Maximum subtended angle for a curved bridge	90°	90°	90°	90°	90°
Maximum span length ratio from span to span	3	2	2	1.5	1.5
Maximum bent/pier stiffness ratio from span to span, excluding abutments	-	4	4	3	2

Table 5.2-2 Regular Bridge Requirements

2) According to "minimum analysis requirements for seismic effects" shown in Table 5.2-3, either "single-mode elastic method (SM)" or "uniform load elastic method (UL)" has only to be taken for seismic analysis. However, "multimode elastic method (MM)" was applied in order to clarify a design procedure of BSDS using the most typical analysis method in the Philippines.

Table 5.2-3 Minimum Analysis Requirements for Seismic Effects

Seismic	a: 1 a	Multispan Bridges								
	Single-Span Bridges	Other I	Bridges	s Essential Bridges		Critical	Bridges			
Zone	Dirages	Regular	Irregular	Regular	Irregular	Regular	Irregular			
1		*	*	*	*	*	*			
2	No seismic	SM/UL	SM	SM/UL	MM	MM	MM			
3	required	SM/UL	MM	MM	MM	MM	MM/TH			
4	1	SM/UL	MM	MM	MM	MM/TH	MM/TH			

Where,

* = no seismic analysis required
 UL = uniform load elastic method
 SM = single-mode elastic method
 MM = multimode elastic method
 TH = time history method

3) Applied Analysis Methodologies

Three (3) dimensional response spectra analysis method (multimode elastic method) was applied for the seismic analysis under the following conditions.

a) Application Point of Superstructure Mass

Application point of superstructure mass was set at centroid of the superstructure. As shown in **Figure 5.2-4**, height of the application point is approximately1.8m from top surface of pier copings.

In dynamic analysis, it is important to define all the considered deadload that act on the structure during earthquake into equivalent mass. Some of commercial software has able to convert automatically by assigning each dead load (e.g. self-weight, nodal load, beam load, etc.) into equivalent masses. First option is to convert self-weight into mass as shown in **Figure 5.2-5** a and other deadload in **Figure 5.2-5** b. Other option is by defining it manually and assigning according to its actual location.

Structure Type X	Loads to Masses X
Structure Type ③ 3-D ○ X-Z Plane ○ Y-Z Plane ○ X-Y Plane ○ Constraint RZ 	Mass Direction ○ X ○ Y ○ Z ○ X, Y ○ Y, Z ○ X, Z ● X, Y, Z ○ X, Z
Mass Control Parameter	Load Type for Converting Nodal Load Beam Load Floor Load Pressure (Hydrostatic) Gravity: 9.806 m/sec^2 Load Case / Factor Load Case : DEADLOAD \checkmark Scale Factor : 1
Gravity Acceleration : 9.806 m/sec^2 Initial Temperature : 27 [C] Align Top of Beam Section with Center Line (X-Y Plane) for Display	LoadCase Scale Add DEADLOAD 1 Modify Delete
Align Top of Slab(Plate) Section with Center Line (X-Y Plane) for Display OK Cancel	Remove Load to Mass Data

Figure 5.2-5 a) Convert self-weight to mass b) Convert other types of deadload to mass

b) Modeling of Bearings (Boundary Conditions at Bearings)

Degrees of freedom of movable and fixed bearings were modeled under the conditions shown in **Figure 5.2-6**.

Figure 5.2-6 Degrees of freedom of Bearings

Bearing was modelled as a linear spring consider rigid in restrained direction by assigning high spring stiffness value in **Figure 5.2-7** a for movable bearing at the abutment and **Figure 5.2-7** b for fixed bearing at Piers.

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Add/Modif	y General L	ink Properties				×	Add/Modi	ify General L	ink Properties				×
Name	Name : XOVABLE Name : XXXII												
Description	n :	ADUTMENT DEA	RING				Description	on :	PIER DEARING	,			
Applicati	on Type			_			Applicat	tion Type			~		
Eler	ment Type 1			O Force Type : Bounda	ry Nonlinear An	alysis	() Ele	ement Type 1			O Force Type : Bounda	ary Nonlinear A	nalysis
Pro	perty Type	Spring		~	Inelastic H	nge Properties	Pn	operty Type	Spring		~	Inelastic H	linge Properties
⊖ Eler	ment Type 2	: Seismic Control	Devices				⊖ Ele	ement Type 2	: Seismic Contro	l Devices			
Se	ismic Contro	Devices Type	:	Viscous Damper / Oil D	amper	\sim	s	eismic Contro	Devices Type	1	Viscous Damper / Oil D	amper	
Se	ismic Contro	l Devices Properti	es :			~	S	eismic Contro	Devices Proper	ties :			~
Self Weig	ght			Use Mass			Self We	ight			Use Mass		
Total	Weight :	0	dN	Total Mass :	0	kN/g	Tota	Weight :	0	kN	Total Mass :	0	kN/g
Lumpe	ed Weight R	atio:		Lumped Mas	s Ratio:		Luma	ed Weight R	atio:		Lumped Mas	ss Ratio:	
I-end	: J-end =	0.5 :	0.5	I-end : J-en	d = 0.5	: 0.5	I-en	d : J-end =	0.5 :	0.5	I-end : J-en	d = 0.5	: 0.5
							1						
DOE	Stiffness		Damping		DOF	roperues	DOE	Stiffness		Damping		DOE	Properties
Dx	0	kN/m	0	kN*sec/m	Dx	Properties	Dx	10000000	kN/m	0	kN*sec/m	Dx	Properties
Dy	10000000	kN/m	0	kN*sec/m	Dy	Properties	Dy	1000000	kN/m	0	kN*sec/m	Dy	Properties
Dz	10000000	kN/m	0	kN*sec/m	Dz	Properties	Dz	1000000	kN/m	0	kN*sec/m	Dz	Properties
Rx	10000000	kN*m/[rad]	0	kN*m*sec/[rad]	Rx	Properties	⊠Rx	1000000	kN*m/[rad]	0	kN*m*sec/[rad]	Rx	Properties
Ry	0	kN*m/[rad]	0	kN*m*sec/[rad]	Ry	Properties	Ry	0	kN*m/[rad]	0	kN*m*sec/[rad]	Ry	Properties
Rz	0	kN*m/[rad]	0	kN*m*sec/[rad]	Rz	Properties	Rz	1000000	kN*m/[rad]	0	kN*m*sec/[rad]	Rz	Properties
	De	scription		Coupled				De	scription		Coupled		
She	ar Spring Lo	cation					sh	ear Spring Lo	cation				
Dista	ince Ratio Fr	rom End I	Dy:	0.5	Dz: 0.5		Dist	ance Ratio Fr	om End I	Dy:	0.5	Dz: 0.5	
				OK	Car	cel Apply					O	Ca	ncel Apply

Figure 5.2-7 a) Movable bearing b) Fixed bearing

c) Pier/Column Stiffness in Analysis (BSDS-Commentary-C4.5.3)

"A moment of inertia equal to one-half that of the uncracked section" was adopted as "cracked section stiffness" in bridge analysis in the consideration of nonlinear effects which decrease stiffness. Image of cracked section stiffness is illustrated in Figure 5.2-8.

Figure 5.2-8 Image of Cracked Section Stiffness of Piers/Columns

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Figure 5.2-9 a) Stiffness factor b) Uncracked section properties c) Cracked section properties

d) Dynamic Spring Properties of Pile Foundation (BSDS-Article 4.4.3)

(MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project

Focusing on " $1/\beta$ " range of pile foundation, which is the effective range of "K_H", foundation structure was modeled as group of springs in one node as shown in **Figure 5.2-10**.

In BSDS, for pile foundation there are two recommended modelling for analysis to determine the natural vibration periods under seismic load. It's either of the following:

- a) Pile cap is modeled as a vertical element with piles represented by vertical, horizontal, and rotational springs lumped at the end node supports. The pile system is represented by foundation spring constants with properties considering all piles in the group. This is called as the simplified foundation model as shown in **Figure 5.2-10** b.
- b) Another type of pile foundation model is called discrete model. In this model, the pile foundation is modeled using discrete elements representing the pile cap and pile body with corresponding stiffness and material properties. Vertical and horizontal springs are used at the nodal points in the piles to represents the ground resistance as shown in Figure 5.2-10 a. This model is recommended when designing pile foundation using plastic hinging forces from columns.

If the effect of foundation on analyses is focused on " $1/\beta$ " range, which is the effective range of "KH", foundation structure can be modeled as group of springs in one node as shown in **Figure 5.2-10**. If this method is applied, "KH" should be calculated with the average value of "ED" in " $1/\beta$ " range,

"(ED) β ". After the calculation of "KH" with "(ED) β ", β can be obtained with the following equation.

$$\beta = \sqrt[4]{\frac{K_H * D}{4 * E * I}}$$

Then, if there's no pile projection over the ground surface, spring properties of a pile can be determined with the following equations; spring properties of a pile with rigid connection at the head

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)
$$\begin{split} & K1 = 4*E*I*\beta^{3} \ (kN/m) \\ & K2 = K3 = 2*E*I*\beta^{2} \ (kN/rad) \\ & K4 = 2*E*I*\beta \ (kN*m/rad) \\ & Kv = a*Ap*E/L \ (kN/m) \end{split}$$

Where,

- K1, K3 : radical force (kN/m) and bending moment (kN*m/m) to be applied on a pile head when displacing the head by a unit volume in a radical direction while keeping it from rotation.
- K2, K4 : radical force (kN/rad) and bending moment (kN*m/rad) to be applied to on a pile head when rotating the head by a unit volume while keeping it from moving in a radical direction.
- Kv : axial spring constant of a pile
- a : modification factor; with CCP, a = 0.031*(L/D)-0.15
- L : pile length (m)
- D : pile diameter (m)
- Ap : net cross-sectional area of a pile (mm2)
- E : Young's modulus of elasticity of the pile (kN/mm2)

Finally, spring properties of entire pile foundation can be determined with the following equations.

Note: the above equations can be applied only when there're no battered piles.

Where,

- Ass : horizontal spring property of the foundation structure (kN/m)
- Asr, Ars : spring properties of the foundation structure in combination with "Ass" and "Arr" (kN/rad)

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

- Arr : rotational spring property of the foundation structure (kN*m/rad)
- n : number of piles in the foundation structure (nos)
- Xi : X-coordinate of the i-th pile head (m)

Determination process of spring properties of foundation for bridge seismic analyses can be summarized with the following flowchart.

Figure 5.2-11 Determination Process of Dynamic Spring Property of Pile Foundation

In these examples, the simplified dynamic analysis model "lumped spring model was adopted during the analysis.

From borehole data at Pier foundation the following average N-value based on soil layer was obtained and the corresponding soil spring stiffness was calculated according to **Figure 5.2-11**.

FOR PIER 1

Layer symbol	Layer type	Layer thickness Li (m)	N- value	Vsi (m/s)	Cv	VsD (m/s)	γt (kN/m3)	G _D (kN/m2)	νD	E _D (kN/m2)
Ac	Clay	12.00	17	257	0.8	205	18.0	77188	0.5	231564
GFW	Clay	1.00	50	292	0.8	233	20.0	110793	0.5	332379

FOR PIER 2

Layer symbol	Layer type	Layer thickness Li (m)	N- value	Vsi (m/s)	Cv	VsD (m/s)	γt (kN/m3)	G _D (kN/m2)	νD	E _D (kN/m2)
Ac	Clay	11.00	15	247	0.8	197	18.0	71281	0.5	213843
GFW	Clay	1.00	50	292	0.8	233	20.0	110793	0.5	332379
GF	Sand	1.00	50	295	0.8	235	20.0	112704	0.5	338112

Pile spring stiffness, P1

Longitudinal	/Transverse D	irection
_	~	~~ .

Туре	Stiffness	Unit
Ass	3,771,748	(kN/m)
Asr,Ars	-4,774,365	(kN/rad)
Arr	37,961,700	(kN*m/rad)
Avv	3,236,400	(kN/m)

Pile spring stiffness, P2 Longitudinal/Transverse direction

Туре	Stiffness	Unit
Ass	3,519,762	(kN/m)
Asr,Ars	-4,559,278	(kN/rad)
Arr	37,594,500	(kN*m/rad)
Avv	3,236,400	(kN/m)

Figure 5.2-12 Piles foundation plan

The computed spring stiffness in this example both directions are same since the configuration of pile foundation as well as the number of piles is the same as shown in **Figure 5.2-12**.

Consideration of off diagonal spring stiffness (Asr, Ars) was also employed in modelling of spring foundation as shown in equation below.

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

$$\begin{bmatrix} F_x \\ F_y \\ F_z \\ M_y \\ M_y \\ M_z \end{bmatrix} = \begin{bmatrix} K_{xx} & 0 & 0 & 0 & K_{Ryx} & 0 \\ 0 & K_{yy} & 0 & K_{Rxy} & 0 & 0 \\ 0 & 0 & K_{zz} & 0 & 0 & 0 \\ 0 & K_{Rxy} & 0 & R_x & 0 & 0 \\ K_{Ryx} & 0 & 0 & 0 & R_y & 0 \\ 0 & 0 & 0 & 0 & 0 & R_z \end{bmatrix} * \begin{bmatrix} U_x \\ U_y \\ U_z \\ \theta_x \\ \theta_y \\ \theta_z \end{bmatrix}$$

Where:

 $Ass = K_{xx} = K_{yy}, and K_{zz} \text{ in } k N/m$ $Arr = R_x = R_y \text{ and } R_z \text{ in } kN.m/r \text{ ad.}$ $Ars, Asr = -K_{Rxy} = K_{Ryx} \text{ in } k N/r \text{ ad.}$

Applying to the analysis model by means of assigning a couple of springs as shown in **Figure 5.2-13**. See also C.4.4.3 Section 4.4.3 in BSDS 2013 for more detail.

General S	pring Type (Co	upled 6 x 6 Sp	ring)			×					
Name :	PIER 1		7								
Toron and B	الد مالد م										
	tiffness Matrix	Mass	Astrix	Damping Matrix							
Stiffne	ss										
	SDx	SDy	SDz	SRx	SRy	SRz					
SDx	3.77175e+0	0	0	0	-4.77437e+(0					
SDy	0	3.77175e+0	0	4.77437e+0	0	0					
SDz	0	0	3.2364e+00	0	0	0					
SRx	0	4.77437e+0	0	3.79617e+0	0	0					
SRy	-4.77437e+(0	0	0	3.79617e+0	0					
SRz	0	0	0	0	0	1e+007					
General Sp	pring Type (Co	upled 6 x 6 Spi	ring)			×					
			1								
Name :	PIER 2										
Input M	1ethod										
🗹 St	tiffness Matrix	Mass M	latrix	Damping Matrix	c –						
Stiffnes	8										
	SDy	SDv	SD7	SDV	SPV	SD 7					
SDx	3.51976e+0	0	0	0	-4.55928e+(0					
SDy	0	3.51976e+0	0	4.55928e+0	0	0					
SDz	0	0	3.2364e+00	0	0	0					
SRx	0	4.55928e+0	0	3.75945e+0	0	0					
SRx SRy	0 -4.55928e+(4.55928e+0	0	3.75945e+0	0 3.75944e+0	0					
SRx SRy SRz	0 -4.55928e+(0	4.55928e+01 0 0	0 0 0	3.75945e+0 0	0 3.759 14e+0 0	0 0 1e+007					

Figure 5.2-13 Soil Spring stiffness input in Midas Civil

e) Damping of Structures (BSDS-Article 4.5.4)

In dynamic analysis, damping of the structural members was given under the following conditions.

- Damping method: strain energy proportional damping
- Damping ratio: Concrete: 2%
- Foundation: 20% (desirable value for "ground type II")

Bridge physical model with lumped type foundation spring model in this example as shown in **Figure 5.2-13**.

Figure 5.2-14 Dynamic Analysis Model of example Bridge in MIDAS Civil

5.2.3 Analysis Loading Model

5.2.3.1 Deadload

Deadload of the structure are composed of self-weight and superimposed deadload. In this example, superimposed deadload are composed of the following:

Wpost	=	24.3	kN
Wrail	=	134.4	kN
Wsidewalk	=	655.2	kN
Wwsurfsce	=	290	kN
We_diaphragm	=	166	kN
Wi_diaphragm	=	177	kN
Wshearblock	=	52	kN
Wblock_pier	=	10	kN
Wsi	=	1509	kN

5.2.3.2 Inertia effect of Live load During earthquake

BSDS C.4.4.1

"Generally, the inertia effects of live loads are not included in the analysis; however, the probability of a large live load being on the bridge during an earthquake should be considered when designing bridges with high live-to-dead load ratios which are located in metropolitan areas where traffic congestion is likely to occur". In this commentary, was mentioned the presence of live load during earthquake specially in metropolitan area like Manila. This clause also may be effective for viaduct which the probability of having vehicle at the bridge during earthquake is most likely to happen. In the analysis, it is not clear how much live load will be considered, but to be conservative 50% of live load effect was considered during earthquake as shown in **Figure 5.2-14**. This live load effect was converted into equivalent mass to perform as inertia force additional to dead load.

 $Wlaneload = 18.68 \ kN/m \qquad 50\% \ Wlane = 9.34 \ kN/m \qquad Distributed throughout the span \\ Reaction of Governing Truck load = 1800 \ kN \qquad 50\% \ Rtruck = 900 \ kN \qquad Act at superstructure bearing \\ support$

Figure 5.2-15 50% of Live load effect converted into equivalent masses

5.2.3.3 Earthquake Load

The 1000-year return period Level 2 earthquake has been employed as a design response spectrum in this example. The acceleration response spectrum as shown in **Figure 5.2-15** and the table corresponding to the curve also as shown in figure below.

Figure 5.2-16 Design acceleration response spectrum

5.3 Modal Analysis

5.3.1 Multimode Spectral Analysis

BSDS 4.3.3

- (1) The multimode spectral analysis method shall be used for bridges in which coupling occurs in more than one of the three coordinate directions within each mode of vibration. As a minimum, linear dynamic analysis using a three-dimensional model shall be used to represent the structure.
- (2) The number of modes included in the analysis should be at least three times the number of spans in the model. The design seismic response spectrum as specified in Article 3.6.1 of these Specifications shall be used for each mode.
- (3) The member forces and displacements may be estimated by combining the respective response quantities (moment, force, displacement, or relative displacement) from the individual modes by the **Complete Quadratic Combination** (*CQC*) method.

The multi-mode spectral analysis method is more sophisticated than single-mode spectral analysis and is very effective in analyzing the response of more complex linear elastic structures to an earthquake excitation.

Multi-mode spectral analysis assumes that member forces, moments, and displacements because of seismic load can be estimated by combining the responses of individual modes using the methods such as Complete Quadratic Combination (CQC) method and the Square Root of the Sum of the Squares (SRSS) method. The CQC method is adequate **for most bridge systems** (Wilson et al., 1981; Wilson, 2009; Menun and Kiureghian, 1998) and the SRSS method is best suited for combining responses of well-separated modes.

Application example of modal analysis and the combination rule using CQC as shown in **Figure 5.3-1**.

Modal Combination Control X											
Modal Combination Type											
⊖ SRSS											
Add	Add signs(+,-) to the Results										
Alon	Along the Major Mode Direction										
Alon	g the Al	osolute Ma	iximum V	alue							
	t Mode S	Shapes									
Mode	Use	Mode	Shape	Factor	^						
1				1.0000							
2				1.0000							
3				1.0000							
4				1.0000							
5				1.0000							
6			1.0000								
7				1.0000							
8				1.0000							
9	\checkmark			1.0000							
10	\sim			1.0000							
11	\checkmark			1.0000							
12	\checkmark			1.0000							
13				1 0000	~						
[Che	ck All	Che	eck None							
	(JK	(Cancel							

Figure 5.3-1 Modal Combination using Midas

5.3.1.1 Eigenvalue Analysis

Response values are calculated based on vibration property of the bridge and inputted seismic motion. Before calculating specific response values such as sectional forces and displacements, understanding the vibration characteristic of the target bridge must be extremely important phase because not only understanding dynamic behaviors but also dominant basic vibration mode can be understood to be utilized for static analysis. The most familiar methodology to clear this problem is eigenvalue analysis with multimode elastic method. Multi-Degree-of-Freedom and Multi-Mass-Vibration system such as bridge structure has same number of natural periods and vibration modes to number of mass. Such like that, eigenvalue analysis can be defined as calculating characteristic values of multi-mass vibration system; the following values are commonly utilized.

(1) Natural Frequency and Natural Period

Natural frequency is defined as the vibration frequency (Hz), and Natural Period is the time (seconds) for a cycle, which indicates the period of well-vibrated vibration system. Eigenvalue analysis is to obtain characteristic values of vibration system, the principal is conformed to the mentioned equation below regarding dynamic analysis in which right side member is zero. Then, damping term should be separated from eigenvalue analysis but should be considered to determine mode damping based on various damping property when response spectrum analysis or time history response analysis. Therefore:

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

- □ No effects from inputted seismic motion and its direction
- Effects from mass and structural system
- Non-linear performance of structural members not considered
- □ Damping coefficient not considered, but later can be considered for response spectrum analysis or time history response analysis

In eigenvalue analysis, the natural frequency ω is obtained without consideration of damping factor, using the following equation. Where, the natural period T_n is the inverse number of the natural frequency.

$$[K] - \omega^2 [M] = 0$$

[K]: Stiffness matrix, [M]: Mass matrix

(2) Participation factor and Effective mass

The participation factor at "j" th mode can be obtained by following the equation. The standard coordination "qj" that is the responses of the mode with larger participation factor become larger and commonly the participation factor has both positive and negative values.

 $\beta_{j} = \{ \Phi_{j} \}^{T} [M] \{L\} / \overline{M}_{j}$ $\beta_{j} : Mode \ participation \ factor, \ \{ \Phi_{j} \} : Mode \ matrix, \ [M] : Mass \ matrix,$ $\{L\} : Acceleration \ distribution \ vector: \ \{ \ddot{Z} \} = \ddot{z} \{L\} : \{ \ddot{Z} \} : Acceleration \ vector, \ \ddot{z} : Ground \ motion \ acceleration, \ \overline{M}_{j} : Equivalent \ mass$

From the participation factor, the effective mass at "j" the mode can be obtained by the following equation and have always positive value and the summation of effective mass of all of the vibration modes must conform to total mass of the structure. This effective mass indicates "vibrating mass in all of mass". In most seismic design codes, it is stipulated that the **sum of the effective modal masses included in an analysis** should be **greater than 90%** of the total mass. This will ensure that the **critical modes** that **affect the results** are included in the design. In this example, the mass participation is tabulated in cumulative order as shown in **Figure 5.3-1**.

(3) Natural Vibration Mode (Mode Vector)

Natural vibration mode, what is called as mode vector, indicated the vibration shape at any mode based on dynamic equation of n-freedom system, which is very important factor because it is required in all the terms consisting of dynamic equation such as mass, damping and stiffness matrix. Generally, standard vibration mode vector $\{\Phi_j\}$ can be obtained by modal coordination which is transformed from displacement vector $\{u\}$ under ratio constant condition; then, coupling parameters are disappeared; n-freedom problem can be treated as "n" of mono-freedom systems. Such the analytical method is called and model analysis method

MODAL PARTICIPATION MASSES PRINTOUT												
Mode	TRA	N-X	TRA	N-Y	TRAN-Z		ROTN-X		ROTN-Y		ROTN-Z	
No	MASS(%)	SUM(%)										
1	94.77	94.77	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.00	0.00
2	0.00	94.77	82.16	82.16	0.00	0.00	3.51	3.51	0.00	0.10	0.01	0.01
3	0.00	94.77	0.00	82.16	3.59	3.59	0.00	3.51	0.23	0.32	0.00	0.01
4	0.01	94.78	0.00	82.16	0.33	3.92	0.00	3.51	64.36	64.68	0.00	0.01
5	0.00	94.78	0.01	82.17	0.00	3.92	0.03	3.54	0.00	64.68	66.49	66.50
6	0.00	94.78	0.00	82.17	66.64	70.56	0.00	3.54	0.60	65.27	0.00	66.50
7	0.00	94.78	0.00	82.17	1.12	71.68	0.00	3.54	9.05	74.32	0.00	66.50
8	0.00	94.78	7.35	89.53	0.00	71.68	2.43	5.97	0.00	74.32	0.01	66.51
9	0.00	94.78	0.00	89.53	9.98	81.66	0.00	5.97	0.24	74.56	0.00	66.51
10	0.05	94.84	0.00	89.53	0.46	82.12	0.00	5.97	3.60	78.16	0.00	66.51
11	0.00	94.84	0.05	89.58	0.00	82.12	1.67	7.63	0.00	78.16	5.10	71.61
12	0.00	94.84	3.23	92.81	0.00	82.12	62.39	70.02	0.00	78.16	0.01	71.62
13	0.02	94.86	0.00	92.81	0.51	82.63	0.00	70.02	0.00	78.16	0.00	71.62
14	0.18	95.04	0.00	92.81	12.72	95.35	0.00	70.02	0.00	78.16	0.00	71.62
15	4.07	99.11	0.00	92.81	0.64	96.00	0.00	70.02	2.23	80.39	0.00	71.62
16	0.00	99.11	0.02	92.83	0.00	96.00	0.15	70.16	0.00	80.39	16.64	88.26
17	0.00	99.11	0.00	92.83	0.02	96.02	0.00	70.16	0.00	80.39	0.00	88.26
18	0.05	99.16	0.00	92.83	0.00	96.02	0.00	70.16	7.58	87.97	0.00	88.26
19	0.00	99.16	4.83	97.66	0.00	96.02	3.18	73.34	0.00	87.97	0.03	88.29
20	0.00	99.16	0.00	97.66	0.80	96.82	0.00	73.34	0.01	87.98	0.00	88.29

Longitudinal T	ansverse dir
----------------	--------------

Total modal participation mass to be considered (requirement: over

Figure 5.3-2 Mass Participation

(a) Eigenvalue analysis option

The subspace iteration method is an effective method widely used in engineering practice for the solution of eigenvalues and eigenvectors of finite element equations.

- This technique is suited for the calculations of few eigenvalues and eigenvectors of large finite element system.
- Starting iteration vectors will be stablished first.

$$q = \min \{2p, p+8\} \le No.$$
 of Mass Degrees of freedom

$$d = q \ast \left(\frac{q+1}{2}\right)$$

Where:

- q = number of iteration vectors
- p = number of eigenvalues and vectors to be calculated
- d = subspace dimension

Eigenvalue Analysis Contro	bl			×			
Type of Analysis	on		○ Ritz Vectors				
Eigen Vectors Number of Frequencies	: 20	•	Eigenvalue Control Paramete Number of Iterations :	ers 28			
Frequency range of	interest		Subspace Dimension :	300 🚔			
Search From :	0	[cps]	Convergence Tolerance :	1e-010			
To :	0	[cps]					
Remove	Eigenvalue A	Analysis Data	ОК	Cancel			

Figure 5.3-3 Eigenvalue Analysis option

Fundamental modes of vibration of the example bridge in two orthogonal direction as shown in **Figure 5.3-2** a and **Figure 5.3-2** b.

a. Longitudinal Direction, Tn = 1.15 secs.

b. Transverse Direction, Tn = 0.69 sec.

Figure 5.3-4 Natural period of Bridge

5.3.2 Bridge Response

Results from seismic analysis of example bridge Pier bottom as shown below.

Elem	Load	Part	Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)
412	TYPE 2 PGA - X(R	J[642]	323.67	0.00	7117.23	0.00	90013.56	0.00
413	TYPE 2 PGA - X(R	J[643]	326.66	0.00	7095.62	0.00	89545.46	0.00
412	TYPE 2 PGA - Y(R	J[642]	0.00	4144.03	0.00	3225.38	0.00	51399.06
413	TYPE 2 PGA - Y(R	J[643]	0.00	4181.11	0.00	3536.09	0.00	51863.05

Table 5.3-1Pier Bottom Force Response

5.4 Elastic Time History (Direct Integration) Analysis

In BSDS Article 4.3.4 mention the used of "Time History Method" in bridge analysis specially for very critical and irregular bridge as specified by DPWH.

Time history analysis is a step-by-step analysis of the dynamic response of a structure to a specified loading that may vary with time. Time history analysis is used to determine the seismic response of a structure under dynamic loading of representative earthquake as discussed in chapter 4 of this guideline. In this chapter, time history analysis using direct integration method of bridge will be discuss.

Mathematical model of example bridges to be used in this analysis are the same as from previous model in Chapter 5.1 except that the seismic load in this model is a transient load. In BSDS following was defined in time history load:

BSDS 4.3.4.2 Acceleration Time Histories

"1.0 Developed time histories shall have characteristics that are representative of the seismic environment of the site and the local site conditions.

2.0 Response-spectrum-compatible time histories shall be used as developed from representative recorded motions. Analytical techniques used for spectrum matching shall be demonstrated to be capable of achieving seismologically realistic time series that are similar to the time series of the initial time histories selected for spectrum matching.

3.0 Where recorded time histories are used, they shall be scaled to the approximate level of the design response spectrum in the period range of significance. Each time history shall be modified to be response-spectrum compatible using the time-domain procedure.

4.0 At least three response-spectrum-compatible time histories shall be used for each component of motion in representing the Level 2 EGM design earthquake (ground motions having seven percent (7%) probability of exceedance in 75 years). All three orthogonal components (x, y, and z) of design motion shall be input simultaneously when conducting a nonlinear time-history analysis. The design actions shall be taken as the maximum response calculated for the three ground motions in each principal direction.

5.0 If a minimum of seven-time histories are used for each component of motion, the design actions may be taken as the mean response calculated for each principal direction.

6.0 For near-field sites (D < 10 km), the recorded horizontal components of motion that are selected should represent a near-field condition and should be transformed into principal components before making them response-spectrum-compatible. The major principal component should then be used to represent motion in the fault-normal direction and the minor principal component should be used to represent motion in the fault-parallel direction."

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding) In this example, seven (7) pairs of time history site specific ground motion has been used as shown in **Figure 5.4-1**.

There are also several methods used in the time history response analysis including the modal analysis, direct integration and the complex response method but the appropriate method shall be chosen based on the purpose of analysis during verification of seismic performance as discussed in Chapter 4 of this guideline. In this example, Direct integration by means of Newmark Integration (Linear acceleration method) has been employed for the analysis. The response may be calculated using spectrally matched input motions applied in two directions simultaneously. In general, the methods of time history analysis are summarized as shown in **Figure 5.4-1** as explained in chapter 4 of this guideline.

Figure 5.4-1Time History Analysis Methods

5.4.1 Time History ground motions

The generated site-specific ground motions based on actual ground characteristics and site conditions has been used in this example.

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Figure 5.4-2 Seven Pairs of spectrally Matched acceleration time history

Using the mathematical model of sample bridge in Error! Reference source not found., Followings are the example of time history analysis performed in Midas Civil software

(1) Definition of dynamic load cases

As shown in **Figure 5.4-2**, first load case is defined as EQ1. Load type is transient since it is a time domain loadings and analysis type are linear using direct integration by Newmark Integration method.

General				
Name : EQ1			Description :	
Analysis Type		Analysis Method Modal Direct Integration Static		Time History Type Transient Periodic
Geometric Nor	nlinearity T	Гуре		
None		○ Large	Displacements	
End Time : Step Number In	60 crement f	sec	Time Incremen	nt : 0.01 🔹 sec
Order in Sequer	itial Loadin	g		
Subsequent	to (Load Case	e	
		🗌 Initial Eler	ment Forces(Table	<u>=</u>)
		Initial For	ces for Geometric	Stiffness
Cumulate D/	V/A Result	is	Keep Final Ste	ep Loads Constant
Damping Meth	od :	Element Mas	ss & Stiffness Prop	portional ~
Damping Meth	od : [Element Mas	ss & Stiffness Proj	portional 🗸
Time Integration Newmark Metho O Constant Ac	Paramete od : sceleration	Element Mas ers Gamma [@ Lii	0.5 near Acceleration	Beta 0.16666666666 OUser Input
Time Integration Newmark Metho O Constant Ac Nonlinear Analys	n Paramete od : :cceleration sis Control	ers Gamma [Parameters	0.5 near Acceleration	Beta 0.1666666666 OUser Input
Time Integration Newmark Meth O Constant Ac Nonlinear Analy: Perform Iter	n Paramete od : [cceleration sis Control ation	ers Gamma [Parameters	0.5 Iteration Con	Beta 0.1666666666 OUser Input

Figure 5.4-3 Load cases definition

(2) Definition of time forcing function (input acceleration time history)

Seven pairs of spectrally matched acceleration time history in **Figure 5.4-1** has been inputted in the analysis model as shown on **Figure 5.4-3**.

Figure 5.4-4 Example input ground motion

(3) Input Ground Acceleration (Fault parallel and Fault Normal Direction)

Selected earthquake ground motion has been assigned according to its principal orthogonal direction simultaneously with respect to the direction of source and the principal axis of the bridge. In this example, only the two components at horizontal direction (fault normal (EQx) and fault parallel (EQy)) earthquake has been applied. The angle of excitation according to bridge position with respect to the nearest source (Line Fault) in this case is approximately 45° as shown in **Figure 5.4-5**.

Figure 5.4-5 Excitation angle of earthquake based on the nearest source

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

(4) Damping

The damping of a structure is related to the amount of energy dissipated during its motion. It could be assumed that a portion of the energy lost because of the deformations and thus damping could be idealized as proportion to the stiffness of the structure. Another mechanism of energy dissipation could be attributed to the mass of the structure and thus damping is idealized as proportion to the mass of the structure. In time history analysis, damping is very important to consider during the analysis. In BSDS Commentary C.4.5.4 mention that "Damping may be neglected in the calculation of natural frequencies and associated nodal displacements. The effects of damping should be considered where a transient response is sought.

Suitable damping values may be obtained from field measurement of induced free vibration or by forced vibration tests. In lieu of measurements, the following values recommended in AASHTO may be used for the equivalent viscous damping ratio:

- □ Concrete construction: two percent (2%)
- \Box Welded and bolted steel construction: one percent (1%)
- \Box Timber: five percent (5%)

In this example, The Rayleigh damping in a direct integration method has been use as explained in chapter 4 of this guideline. The values of a_0 and a_1 determined by only two major modes, which are incorporated in $C = a_0M + a_1K$ to compute a damping matrix. With the equation of motion in a matrix format, direct integration is executed for each time step. Application of this type into the analysis model as shown in **Figure 5.4-5**

Group Damping : Element	Mass & Stiffness F	Proportional									×
Unspecified Nodes, Elemen	ts and Boundaries		Specified Nodes, Elements A	Damping Coefficients for Specified Material Data/Group							
Damping Type : Mass Stiffness Proportional			Material Data / Group				Туре	Ratio 1	Ratio2	Alpha	Beta
O Direct Specification : 0 0			Type. () Material	O structure O boundary		RC	Mat	0.02	0.02	0.136209	0.00274642
Calculate from 0.34052153177 0.00686604597		Name of Material / Group :	All Material Da	ita 🗸	PC .	Matri	0.02	0.02	0.136209	0.00274042	
Coefficients Calculation			Coefficients Calculation								
	Mode 1	Mode 2	Damping Type :	✓ Mass Proportional	Proportional						
Frequency [Hz] :	0.864	1.454	O Direct Specification :	0	0						
O Period [sec] :	0	0	Calculate from	0	0						
Damping Ratio :	0.05	0.05	Modal Damping :								
(0.00 ~ 1.00)			Frequency / Period	Manda a	Made D						
Description			Economic Hal	0.864	1 454						
* Damping coefficients speci	ified in "Unspecified	Nodes,	requency [n2] :	0.001	1.151						
Elements and Boundaries" and	re applied to the No	odes,	OPeriod [sec] :	0	0						
elements or boundaries to w have not been assigned.	hich the damping c	oefficients	Set Default Data								
* Damping coefficients for m	asses converted fr	om Self-	Damping Ratio								
Weight are determined from Links. However, damping co	the elements or Ge efficients for masse	eneral es entered	Use Material Data	O Direct D	efine						
from Nodal Masses or Loads	to Masses are dete	ermined		Mode 1	Mode 2						
* "Group Damping: Element	Mass & Stiffness Pr	oportional"	(0.00 ~ 1.00)			Define		Modify	De	elete	
can be applied with the "Elen	nent Mass & Stiffne	ss Pro-									
portional" damping method in	n the Time History L	oad Case.				Priority of	fDamping	Ratio		OK	Cancel

Figure 5.4-6 Damping Coefficient Calculation using Midas civil

- (5) Time History Analysis Results
 - a) Time History Response

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Figure 5.4-7 a) Moment (My) Response of Pier bottom due to Eq1

b) Force Response

Design actions were taken as the mean response due to seven pairs of ground motions as explained in BSDS 4.3.4.2.

SAMPLE BRIDGE										
PIER	R NO.:	1	FORCES							
Elem	Load Part		Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)		
412	2 EQ1(ma J[642]		288.93	5182.82	5476.84	3733.92	70233.34	58972.4		
412	EQ2(ma	J[642]	450.08	4943.08	7451.77	3783.43	108068.83	60436.09		
412	EQ3(ma	J[642]	289.19	6843.97	6084.9	5655.11	90919.15	89701.26		
412	EQ4(ma	J[642]	318.65	5061.04	8165.82	4041.32	96915.87	64480.69		
412	EQ5(ma	J[642]	297.87	3233.44	5486.41	2869.91	2869.91 80894.25			
412	EQ6(ma	J[642]	414.11	4121.29	10333.81	3291.48	3291.48 124001.9			
412	EQ7(ma J[642]		334.52	5978.16	5917.66 4150.1		83399.67	67361.69		
	ME	MEAN: 341.90714		5051.97143	6988.17286	3932.18857	93490.43	62638.71714		
				SAMP	LE BRIDGE					
PIER	R NO.:	2		FORCES						
Elem	m Load Part		Axial (kN)	Shear-y (kN)	Shear-z (kN)	Torsion (kN*m)	Moment-y (kN*m)	Moment-z (kN*m)		
413	EQ1(ma	J[643]	219.93	5240.69	5448.89	4342.05	69862.9	59580.55		
413	EQ2(ma	J[643]	325.11	4994.96	7414.77	4188.39	107509.25	60996.72		
413	EQ3(ma	J[643]	252.16	6908.45	6052.12	5914.37	90430.25	90409.2		
413	EQ4(ma	J[643]	326.22	5125.7	8124.28	4364.46	96403.7	65124.97		
413	EQ5(ma	J[643]	335.39	3273.9	5458.12	2813.26	80459.42	45599.37		
413	EQ6(ma	J[643]	410.16	4163.44	10281.85	3448.46	123341.47	52718.63		
413	EQ7(ma	J[643]	296.77	6000.29	5884.94	4810.29	82954.56	67878.07		
	ME	AN:	309.391429	5101.06143	6952.13857	4268.75429	92994.50714	63186.78714		
MA	X FORC	ES:	341.907143	5101.06143	6988.17286	4268.75429	93490.43	63186.78714		

Table 5.4-1 Force Response

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Displacement (Dx) Pier top_EQ1 0.15 0.1 Displacement, m 0.05 0 -0.05 -0.1 -0.15 0 10 20 30 40 50 60 time, secs.

c) Displacement Response of Pier top

The design displacement at any direction were taken as the mean response of bridge due to seven pairs of earthquakes as shown in **Table 5.4-2**.

Table 5.4-2 Design Displacement At Pier Top											
Node	Load	DX (m)	DY (m)	DZ (m)	RX (rad)	RY (rad)	RZ (rad)				
224	EQ1(max)	0.121684	0.102286	0.00011	0.012822	0.014288	0.001674				
224	EQ2(max)	0.187435	0.104567	0.000171	0.012379	0.022053	0.001696				
224	EQ3(max)	0.15734	0.1552	0.00011	0.017458	0.018419	0.002535				
224	EQ4(max)	0.167794	0.111639	0.000121	0.012887	0.019657	0.001812				
224	EQ5(max)	0.140006	0.078113	0.000113	0.00828	0.016411	0.001286				
224	EQ6(max)	0.214616	0.090488	0.000157	0.010142	0.025144	0.001475				
224	EQ7(max)	0.14447	0.116174	0.000127	0.014156	0.017002	0.001861				
N	IEAN:	0.161906	0.108352	0.00013	0.012589	0.018996	0.001763				

Intentionally Blank

CHAPTER 6: SEISMIC DESIGN OF PIER

Chapter 6 Seismic Design of Pier

6.1 Flowchart

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

6.2 GENERAL DESIGN CONDITIONS & CRITERIA

6.2.1 Bridge General Elevation & Cross section

6.2.2 Pier Geometry and Location Map.

6.2.3 Structural Conditions

- Two lane carriageway; total width = 10.50m
- 3-35m continuous ASSTHO girders- Type V
- Bearing restraints: M-F-F-M (F=fixed, M=movable)
- Regular bridge (non skewed bridge)
- Pier type: single column on cast in place concrete pile
- Abutment type: cantilever type on cast in place concrete pile

6.2.4 Seismic Design Requirements and Ground Conditions

Bridge Operational Classification =	OTHERS
Earthquake Ground Motion =	Level 2
Ground Type =	3
Seismic Performance Level =	3
Seismic Performance Zone =	4
Peak Ground Acceleration =	0.6g

6.2.5 Site Factors

Site Factors:				
Fpga =	0.88			
Fa =	0.92			
Fv =	1.55			
As =	0.53			

BSDS DESIGN STANDARD GUIDE MANUAL

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

6.2.6 Borelogs (not to scale)

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

6.2.7 Hydrology and Hydraulics Data

100 years Return Period
Discharge: 3100 m³/s
Water Level, DFL: 18.50m
Velocity: 4.12 m/s
Freeboard: 0.0m (no consideration)
Drainage Area: 2,360 sqm
Computed scour depth: 6.67m

6.2.8 Design Loads

1.	Perman	ent Loads	2. Transi	ent Loads
	DC =	Dead load pertaining to structural and	EQ =	Earthquake
		non-structural components	LL/IM =	Vehicular
	DW =	Dead load pertaining to future wearing		Load/Impact Load
		surface	LS =	Live load Surcharge
	EH =	Horizontal earth pressure	WA =	Water Load
	$\mathbf{ES} =$	Earth surcharge	FR =	Friction Load
	EV =	Vertical pressure from earth fill	BF =	Braking Force Load

For Seismic load analysis: Refer to BSDS

Load Combinations and factors: Refer to DGCS 10.0

6.2.9 Material and Soil Property

Conc. Compressive strength @ 28days, f'c	28	MPa
Reinforcing steel (ASTM 615), fy	415	MPa
Unit weight of concrete, δc	24	kN/m ³
Unit weight of concrete, Ysoil	19	kN/m ³
Unit weight of rock, γr	20	kN/m ³

6.3 LOAD CALCULATIONS

6.3.1 Seismic Loads

Obtain the elastic seismic forces of column at its base due to earthquake loadings in longitudinal (Long'l EQ) and transverse (Trans. EQ) directions from the bridge seismic analysis.

Loads =

Trans. EQ + 50% LL

Long'l EQ + 50% LL

LC1 = 1.0*Long'l EQ + 0.3*Trans. EQLC2 = 1.0*Trans. EQ + 0.3*Long'l EQ Calculate the <u>orthogonal forces</u> and inelastic hinging effect with Modification Factor, R.

Modified elastic forces(LC moment /R)

ELASTIC FORCES								
Loodings		LONGI	TUDINAL	TRANS	AXIAL			
Loauings	Load Type	SHEAR -z	MOM -y	SHEAR -y	MOM -z	Fx		
	Long'l. EQ.	7117.00	90014.00	0.00	0.00	324.00		
Joads	Transv. EQ.	0.00	0.00	4181.00	51863.00	0.00		
Loaus	LC1	7117.00	90014.00	1254.30	15558.90	324.00		
	LC2	2135.10	27004.20	4181.00	51863.00	97.20		
		VL	ML	VT	M _T			
I C moment/P	LC1	7117.00	30004.67	1254.30	5186.30	324.00		
	LC2	2135.10	9001.40	4181.00	17287.67	97.20		
R =	3							

Note: For regular/normal bridges, forces are absolute values that is without regards to its sign because the seismic can act in either direction.

BSDS 3.8: RESPONSE MODIFICATION FACTOR, R

Table 3.8.1-1 Response Modification Factors - Substructures

	Operational Category					
Substructure	OC-I (Critical)	OC-II (Essential)	OC-III (Others)			
Wall-type piers - larger dimension	1.5	1.5	2.0			
Reinforced concrete pile bents Vertical piles only With batter piles 	1.5 1.5	2.0 1.5	3.0 2.0			
Single columns	1.5	2.0	3.0			
Steel or composite steel and concrete pile bentsVertical piles onlyWith batter piles	1.5 1.5	3.5 2.0	5.0 3.0			
Multiple column bents	1.5	3.5	5.0			

Calculate the combine seismic design forces considering the bi-axial response (for circular column).

SEISMIC DESIGN FORCES due to combination of biaxial response:					
EQ_LC1 Mlong=MdL = sqrt $(M_L^2 + M_T^2) =$ 30449.59 kN-m					
	$Vlong=VdL = sqrt (V_L^2 + V_T^2) =$	7226.68	kN		
EQ_LC2	$Mtrans = MdT = sqrt (M_L^2 + M_T^2) =$	19490.73	kN-m	97.2	
	$Vtrans = VdT = sqrt (V_L^2 + V_T^2) =$	4694.62	kN		

ar Transverse <<<local axis of column Bridge Long'l axis y

equivalent inertial mass) for

metropolitan bridges.

•For regular/normal and short bridges, it is likely the Long' EQ will produce in zdirection while Trans EQ will produce in ydirection.

•BSDS 3.8. The sample bridge is OC III, Mod. Factor for single column, R=3

•The column is circular which is same capacity in any direction. To simplify the investigation, the load components are combined to obtain vector sum. This procedure not applicable for tied, rectangular or wall shape pier column.

6.3.2 Permanent Loads

6.3.3 Vehicular Loads

				Commentary
From live load analysis, the Reaction of	of tandem of 2-HL93 =	528.00	kN	
	the Reaction Lane Load =	360.00	kN	
Reaction of tandem of 2-HL 93 $=$	90% (Rxn) =	475	kN	
Reaction of Lane load =	90% (Rxn) =	324	kN	
Reaction per wheel line (2-HL 93)		237.60	kN	
Reaction per wheel line (Lane load)		162.00	kN	
Impact (not to be applied to Lane Load an	nd footing),IM	n/a		
Factor for multiple presence (m) on 1-lan	e	1.20		
Factor to multiple presence on (m) 2-lane		1.00		
No. of lanes		2		
For bottom of Column				
$\frac{1}{M} = \frac{1}{M} = \frac{1}$	-IM) + Lane)x L.A. x m	2409.16	kN-m	
Pmax = Reaction ((2-HL + IM) + Lane Lo	bad) x m x No. of tandems of 2-HL93	1912.03	kN-m	
b. Vehicular Braking Force, BI	<u>r</u>			
				•The superstructure
Note: Braking force shall be taken as the g	greater of :			therefore the
25% (HL 93) = 25% (145kN + 145k)	kN + 35kN) =	81.25	kN	vehicular load will
25% (Tandem)= $25%(110kN+110k)$	N) =	55.00	kN	produce braking force.
5% (HL 93 + Lane Load) = $5%(145k)$	N +145kN+35kN+Total Length *9.34)	65.29	kN	
5% (Tandem) + Lane Load) = $5%(110 - 5%)$	+110+Total Length *9.34)	<u>60.04</u>	kN	
Therefore horizontal force BF = greater of	of the vehicular BE x no. of lanes x m	162 50	kN	
		102.00		
For bottom of Column				
$V_{LONG} = BF /no.$ of Column per pier	for single column-pier	162.50) kN	
$M_{LONG} = V_{LONG}$ (L.A.= height of column	+cap thickness)	2112.50) kN-m	
For bottom of footing				
Mlong = Vlong (L.A.= height of column	n+cap thickness+ftg thickness)	2437.50	<mark>)</mark> kN-m	

6.3.4 Stream flow, WA

a. During Ordinary	• DGCS 10.12.3		
Uniform distributed pr	essure,	$P = 5.14 \text{ X} 10^{-4} \text{ C}_{d} \text{ V}^{2}$	 The OWL is always present hence its
Drag coeff. $C_d =$	0.7	for circular shape	effect is combined
Velocity of water, V=	3.00	(refer to hydraulic report), m/s	with Extreme Event 1

6.3.5 TU, Shrinkage & Creep, Settlement

These force effects are excluded in this example. In the actual design, the effects of these forces must be considered if applicable.

Г

Looda	Pmax	Pmin	Vlong	Vtrans	Mlong	Mtrans	practically refers
Loads	kN	kN	kN	kN	kN-m	kN-m	condition when the structure is alread
DC_super	5600	5600	0	0	0	0	completed, while
DC_cap	1102.5	1102.5	0	0	0	0	construction stag
DC_col	1401	1401	0	0	0	0	
DW	300	300	0	0	0	0	
LL+IM	1912	0	0	0	0	2409	
BF	0	0	163	0	2113	0	
WA_owL	-265.33	-265.33	0	42	0	105	
WA_dfL	-530.66	0.00	0	159	0	794	
EQ_LC1	324.0	0.0	7227		30450		
EQ_LC2	97.2	0.0		4695		19491	71

6.3.7 Load modifiers and factors

		Q = 2	$\Sigma \eta_i \Upsilon_i Q_i$	Total factored force effect, Q	•DGCS 10.3
	where	$\eta_{i=}$	η_D	$^{*}\eta_{R} * \eta_{l} > 0.95$ Strength Limit State (maximum value)	
		$\eta_{i=}$	1/(η _D	$\label{eq:eq:prod} {}^{*}\eta_{R} \; {}^{*}\eta_{l)} \leq 0.95 \mbox{ Strength Limit State (minimum value)}$	
		$\eta_{i=1}$	load moo	ifier	
		$\Upsilon_i = 1$	load fact	ors	
		$\eta_D = 1$	factor re	lating to Ductility	•Yi load factors
		$\eta_{R} = 1$	factor re	lating to Redundancy	specified in DGCS
		$\eta l = 1$	factor re	lating to Operational Importance	10.3-2
		$Q_i = 1$	Force ef	fects	
				For the Strength Limit State	
Þ	$\eta_D =$	2	1.05	for non-ductile components and connections	
tilii	$\eta_D =$	=	1.00	for conventional designs and details complying AASHTO Specs	
Duc	η _D =	2	0.95	for components and connections that additional ductility enhancign measures are specified beyond required	
	12			by AASH1U	
	$\eta_D =$	Ξ	1.00	For all other Limit State	
>				For the Strength Limit State	
n c	$\eta_{R=}$	2	1.05	for non-redundant members	
lunda	$\eta_{R=}$	=	1.00	for conventional levels of redundancy, foundation elements where Ø already accounts for redundance as specified in Art 15.2)	
Red	$\eta_{R=}$	2	0.95	for exceptional levels of redundancy beyond girder continuity and torsionally-closed cross section.	
	$\eta_{R=}$	=	1.00	For all other Limit State	

Commentary

																	Commentary
al Se								For	the !	Stren	gth L	imit ,	State				-
and	nl	>		1.05	fe	or crit	ical or ess	ential	bridg	es	,						-
ort	$r_{\rm r}$ = 1.00 for typical bridges									-							
npe	ηι ₌	- 1.00												-			
\circ \exists $\eta_{l_{=}} \geq 0.95$ for relatively less important							rtanc	e brid	ges						-		
	$\eta l_{=}$	=		1.00	ŀ	'or al	other Li	imit S	State								
	Table	10.3-1	Load	Combi	nation	and Loa	d Factors							Table 10.3-2 Load Factors for Permanent Loads,	Yp.		
	and Combination	D	C D								Use	one of at a tim	these e		Load	Factor	
L	bad Compination	D	N LL H IM											Type of Load	 May	Min	Load Factors:
		E	V CE S BR	WA	w	5 FR			SE						max		DGCS Table 10.3-1
	Limit State	E P	L PL S LS							EQ	BL	СТ	CV	DC: Component and Attachments	1.25	0.90	and 10.3-2
		CI SI	R H											DD: Downdrag	1.80	0.45	
STRENG	GTH-I (Unless noted	l) γ ₀	1.7	5 1.0) -	1.00	0.50/1.20	0.0	γse	•	•	•		DW: Wearing Surfaces and Utilities	1.50	0.65	
STRENG	STH-II	γp	1.3	5 1.0) -	1.00	0.50/1.20	0.0	Yse	-	-	-		EH: Horizontal Earth Pressure			
STRENG	STH-III	γp	1.3	5 1.0) -	1.00	0.50/1.20	0.0	γse	-	-	-	-	Active	1.50	0.90	
STRENG	STH-III	γρ	-	1.0	0 1.4	1.00	0.50/1.20	0.0	Yse	-	-	-	-	At-Rest	1.35	0.90	
STRENG	STH-IV	γp	•	1.0) -	1.00	0.50/1.20	-	-	-	-	-	•	FI : Locked-in Frection Stresses	1.00	1.00	
EH, EV,E	ES,DW,	1.5	5		_									EL: Louica In Election oucodes	1.00	1.00	
DC ONL'	Y								_					EV. Verucal Earth Pressure			
STRENG	STH-V	γρ	1.3	5 1.0	0 0.4	0 1.00	0.50/1.20	0.0	Yse	•	•	•	•	Retaining Walls and Abutments	1.35	1.00	
EXTREM	IE EVENI - I	Υp	ΎEQ	1.0) -	1.00	•	-	-	1.00	-	-	•	Rigid Buried Structure	1.30	0.90	
EVENI -			0.5	10		1.00					1.00	1.00	10	Rigid Frames	1.35	0.90	
EXTREM		rp	0.5	1.0		1.00					1.00	1.00	0	Flexible Buried Structures other than Metal Box Culverts	1.95	0.90	
EVENT -	I													Flexible Metal Box Culverts	1.50	0.90	
SERVICE	E-I	1.0	00 1.0	0 1.0	0.3	0 1.00	1.00/1.20	0.0	Ϋ́SE	•	•	•	•	EQ: Earth Purcharas	4.60	0.75	
SERVICE	E - II 	1.0	0 1.3	1.0) -	1.00	1.00/1.20	-	-	•		•	•	Eo. Earth ourchaige	1.00	0.75	
SERVICE	E-III E N/	1.0	0 0.8	1.0) -) 07	1.00	1.00/1.20	0.0	γse 1.0	-	-	•	•				
SERVIUS	E-IV E_111_IM_& CE (15	1.0			1.00/1.20	•	1.0	-	-						
FATIGUE			1.0														

6.3.8 Summary of factored and load combinations

STRENGTH 1	 Modifier, ηi (Strength Limit)
Pmax =ni [1 .25 (DC_super+DC_cap+DC_col)+1.5(DW) +1.75(LL + IM) +1.0(WA_dfL] Pmax = 140	$\eta_{\rm D} \ge 1.05$
$Pmin = \eta i [0.9 (DC_super+DC_cap+DC_col)+0.65(DW) + 1.0(WA_owl)] Pmin = 686$	$51.68 \text{ kN} \qquad \eta I \ge 1.00$
	for max. values ni = 1.05 x 1.00 x 1.00
Vlong = qi[1.25 (DC_super+DC_col)+1.5(DW) +1.75(BR)] Vlong = 29	98.59 kN ni = 1.05
$V trans = \eta i [1.25 (DC_super+DC_cap+DC_col)+1.5(DW) + 1.0(WA_dfL)] V trans = 1600 V trans = 1$	66.73 kN for min. values ni = 1/(1.05 x 1.0 x 1.0)
	ηi = 0.95
$Mlong = \eta i [1.25 (DC_super+DC_cap+DC_col)+1.5(DW) + 1.75(BR)] $ $Mlong = 388$	81.72 kN-m
$Mtrans = \eta i [1.25 (DC_super+DC_cap+DC_col)+1.5(DW) + 1.75(LL + IM) + 1.0WA_dfL] \qquad Mtrans = 522000 Mtrans = 522000 Mtrans = 52200 Mtrans = 522000 Mtrans = 522000 Mtrans = 52000 Mtrans = 520000 Mtrans = 52000 Mtrans = 5200000000 Mtrans = 5200000000000000000000000000000000000$	20.79 kN-m

		Commentary
EXTREME EVENT 1		
Pmax=ni[1.25 (DC_super+DC_cap+DC_col)+1.5(DW) +0.5(LL + IM) + 1.0(WA_owl)+ 1.0EQ]	Pmax = 11594.06 kN	
Pmin =qi[0.9 (DC_super+DC_cap+DC_col)+0.65(DW)+1.0(WA_owl)+1.0EQ]	Pmin = 7027.82 kN	
Vlong =ni[1.25 (DC_super+DC_cap+DC_col)+1.5(DW) +0.5(BR) +1.0EQ]	Vlong = 7307.93 kN	
Vtrans =ni[1.25 (DC_super+DC_cap+DC_col)+1.5(DW) +1.0(WA_owl) +1.0EQ]	Vtrans = 4736.71 kN	
Mlong =ni[1.25 (DC_super+DC_cap+DC_col)+1.5(DW) +0.5(BR)+1.0EQ]	Mlong = 31505.84 kN-m	
M trans =ni[1.25 (DC_super+DC_cap+DC_col)+1.5(DW) +0.5(LL + IM) +1.0WA_owl+1.0EQ]	Mtrans = 20800.55 kN-m	
SERVICE 1		
Pmax =ni[1.0 (DC_super+DC_cap+DC_col)+1.0(DW) +1.0(LL + IM)+1.0(WA_owl)]	Pmax = 10050.20 kN	
Vlong =ni[1.0 (DC_super+DC_cap+DC_col)+1.0(DW) +1.0(BR)]	Vlong = 162.50 kN	
Vtrans =ni[1.0 (DC_super+DC_cap+DC_col)+1.0(DW) +1.0(WA_owL)]	Vtrans = 42.1 kN	
Mlong =ni[1.0(DC_super+DC_cap+DC_col)+1.0(DW) +1.0(BR)]	Mlong = 2112.50 kN-m	
Mtrans =qi[1.0 (DC_super+DC_cap+DC_col)+1.0(DW) +1.0(LL+ IM) +1.0WA_owl]	Mtrans = 2514.40 kN-m	
From load combinations above, it shows Extreme Event 1 is c	critical at LC1	
combination (Long'L EQ direction)!!!!		

6.3.9 Verification of slenderness effect

AASH	AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS						(S	Directions	LONG'L	TRANS.		•DGCS 12.4.4.2
Table C4.6.2.5-1-	Table C4.6.2.5-1—Effective Length Factors, K							К	2.1	2.1		
1	(a) (b) (c) (d) (e) (f)					(f)	1	Lu , m	11.0	11.0	clear height	• AASHTO Table C 4 6 2 5 1 - effective
	1	4	+	11	11	11		Diameter, m	2.60)		Length Factor, K.
Buckled shape of column is shown	I		1000	IJ	ľ	4		Ig= $(\pi D^4)/64, m^4$	2.24	1	for circular column	
by dashed line	Ţ	1		Ľ			($Ag = \pi D^2/4, m^2$	5.3	l	for circular column	
	1	1	Î	Ĩ	Ī			r=sqrt(Ig/Ag), m	0.65	5	radius of gyration	
Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0		kLu/r	35.54	35.54		
Design value of K when ideal							1	Ec, kN/m ²	27,000,000.00			
conditions are approximated	0.65	0.80	1.0	1.2	2.1	2.0		Cm	1		for all cases	
	Ť	Rotati	ion fixe	d Tr.	anslatio	n fixed	1	ф _К		5	for concrete	
End condition code	8	Rotation free Translation fixed Rotation fixed Translation free			β_d	0						
	Ť	Rotati	ion free	Tra	anslatio	n free	l,	$EcIg = (Ec Ig / 2.5)/(1+\beta_d), kN-m^2$	24,21	4,015.80		
if kLu/r>=22	comp	oute ma	agnific	ation	factor			$P_e = \pi^2 \text{Eclg}/(\text{kLu})^2$, kN	44	7,406.36		
if kLu/r < 22	negle	ct slen	dersne	ess eff	fects			Pu=factored axial load,kN	1	1,594.06	Pmax	
if kLu/r<=10) proc	eed to	appro	oximat	e			$\delta_b = \delta_s = Cm/(1-(Pu/\varphi_K))$	(P _e)) >=1			
evaluation of	slende	erness	effect				Mom	ent magnification factor $\delta b = \delta s =$		1.036		

6.4 Verification of Column Flexural Resistance and Displacement

6.4.1 Verification of column resistance

				Commentary
Column: pier1		Engineer: MFT		
fc = 28 MPa	fy = 415 MPa	Ag = 5.30929e+006 mm^2	76 #11 bars	
Ec = 24870 MPa	Es = 200000 MPa	As = 76490 mm^2	rho = 1.44%	
fc = 23.8 MPa	e_yt = 0.002075 mm/mm	Xo = 0 mm	lx = 2.24e+012 mm^4	
e_u = 0.003 mm/mm		Yo = 0 mm	ly = 2.24e+012 mm^4	
Beta1 = 0.846954		Min clear spacing = 61 mm	Clear cover = 113 mm	
Confinement: Spiral				
phi(a) = 0.85, phi(b) = 0.9,	phi(c) = 0.75			

6.4.2 Verification of column displacement

			Commentary
From analysis of acceleration	n response spectrum (Chapter 5):	
T= 1.00	sec sec		
Ts = 0.59	sec		
1.25*Ts = 0.74	sec		
by inspection : $T > 0.74$	<mark>1</mark> sec		
therefore Rd = 1			
From bridge seismic analysis	due to mass or dead	load only the displacement of top and bottom of column as follow	ws:
Longitudinal dir	ection:	Transverse direction:	
$\Delta_{top} = \Delta_1 =$	- 180 mm	$\Delta_{top} = \Delta_1 = 100 \text{ mm}$	
$\Delta_{\text{bot}} = \Delta_2 =$	• 6 mm	$\Delta_{\text{bot}} = \Delta_2 = \frac{6}{100} \text{ mm}$	
$\Delta e = \Delta_{top} - \Delta_{bot}$	174 mm	$\Delta e = \Delta_{top} - \Delta_{bot}$ 94 mm	
	-		
$\Delta actual = Rd * \Delta e =$	174 mm	$\Delta actual = Rd * \Delta e = 94 mm$	
∆allow = 0.25ØMn/PdL =	951 mm	$\Delta \text{allow} = 0.25 \text{ØMn/PdL} = 951 \text{ mm}$	
c/d =	5.47	c/d = 10.12	
OK in long'l o	displacement!!!	OK in transv. displacement!!	!
Therefore use	Column diameter =	2600 mm	
	Vertical bars =	76-36Ø	
	$\rho_s =$	1.44%	

6.5 Verification of Column Shear Resistance

a. Obtain the corresponding shear from overstrength moment resistance	• BSDS 5.3.4 : The
Shear design = <i>VdL=Vp</i> = 3,317.24 kN	design shear Vd = Vp for single column or multiple columns. While Vd is the lesser
The nominal shear resistance, Vn is lesser of the following:	of Vd or Vp for pile
	bent.
Vn = Vc + Vs + Vp OR Vn = 0.25 f'c bv dv + Vp	
where: $V_c = 0.083 * \beta * Sqrt(f'_c) * b_v * d_v$ $V_s = [A_v * f_y * d_v * (cot\theta + cota)sina] / s$ $V_p = 0.00$ for non-prestressed concrete	
Ultimate shear resistance, $V_r = \emptyset V_n$: $V_r = \emptyset V_n > Vp$ where $\emptyset = 0.9$ for shear	
Shear design parameters:	

						Commentary		
D	diameter of pier column (out to out din	nension)		2600	mm	•DGCS Eq 12.5.3.2-1		
- CC	concrete cover (to spiral or hoops) (Ta	able 12.9.2-1)		100	mm	•DGCS Eq 12.5.3.2-2		
dh	main bars or longitudinal bars mm			36	mm	•DGCS Eq 12.5.3.2-3		
ds	size of spirals			20	mm			
fc	concrete compressive srrength	MPa						
fv	vield strength of reinforcing steel	MPa						
h h	effective web width mm - diameter of							
v_v	$d_{2} = (D/2) + (D/\pi)$							
d	$de = (D/2) + (D_r / h)$	mm						
a_v	factor indicating ability of diagonally of	ealed concrete to transr	nit tansion	2.0	111111			
ρ	and of indicating ability of diagonal compression			2.0 45	daa			
0	angle of inclination of transverse reinfe	ssive suesses		43	deg			
u D	angle of inclination of transverse femice	of the longitudinal spinfo		90	deg			
D_r	diameter of circle passing thru centers	di une longitudinal reinto	rcement, mm	2324	mm			
D_c	diameter of cirle measured outside the	diameter of spiral/noops,	mm	2400	mm			
A _c	Area of core measured outside diamete	r of spiral/hoops, mm ²		452160	0 mm^2			
A_{g}	Gross area of secction			530660	0 mm²]		
D		D ,/π	d _e d _v		с			
L Cal	: For definition of terms:							
D. Cal	culate the shear resistance:					the spiral type for		
From al	pove parameters:					confinement of circular columns.		
ds	size of spirals	20 mm	Definition	of no. o	f legs			
A_{sp}	area of shear reinforcement	314 mm			οg			
S	Try spacing of transverse steel	100 mm^2	ICE		σ			
No	Try number of legs	4 No.of legs	no. of s	pirals	No.of legs			
Total are	a of shear reinf for two(2) sides : Av = $\frac{1}{2}$	1256 mm ²	single s	piral	2 legs			
	$Av = No * (A_{sp})$	1250 IIIM	bundle	spiral	4 legs			
$\cot \theta =$	$= 1/\tan 45^\circ = 1$	_			_			
cot α =	$= 1/\tan 90^{\circ} = 0$							
sin α =	sin 90° = <mark>1</mark>							

								Commentary
V	c =	0.00	kN	for conserv	vative approach, assum	e Vc=0.0, i.e. concret	e has no shear strength.	
V	n=	0.00	kN	For non pre	estressed concrete		C	
, V	[Δv*f	fu*du*(cotA + (rota)sina	1/s =	9571 kN			
	5 [7.0			.]/ 5				
Vn	is lesser	r of the follow	ing:					
V	n = Vc + V	/s +Vp		=	9571 kN	Governing	shear capacity!!!	
V	n =0.25 f	'c bv dv+Vp		=	33417.29 kN		----	
	d -Vn-				2217 LN	1		
I I	<i>u_L– v</i> p- Iltimate (
	Juinate	shear resistan	, v _r	-		c/u – 2.00 V	I > VU, INCICIOLE OK	
c.	Verific	ation of shea	r/transv	erse rei	nforcement f	or confinem	ent at plastic	•DGCS 12.7.11.2
	hinges						•	
T	- 41 - F	1	'11 1 41	1	41 f . 11			
Ler	igin of co	sumn end region	will be the	260	the following :			
a.) b.)	1/6 clear	r height	=	1.83	m cle	ar height $=$	11.00 m	
c.)	450 mm ((18 inches)	=	0.45	m			
,		therfore,	Length =	2.60	m			
d.	Verific	ation of mini	mum rec	quired tr	ansverse reir	nforcement		
1	The gre	eater of the fol	lowing.					
			10 11 11 81		0.00010.0			
	$\rho_{s1} = 0.1$	$2^{*}(f'_{c}/f_{y})$		=	0.00810 Gov	verns!!!		
	Note: fo	or circular sha	pe:	1	0.00505			
	$\rho_{s2} = 0.4$	$5^{*}[(A_g/A_c) - I]$	$\int *(f' c/f_y)$,) =	0.00527			
2.	Checkin	ng from provi	ded conf	inement				
		ng nom provi		mement,	where Av rep	oresent spiral	leg on one (1)	
	side			mement,	where Av rep	present spiral	leg on one (1)	
	side $\rho_{s provid}$	$t_{red} = \frac{4^{*/4}}{2}$		= 0.0	where Av rep 01081	oresent spiral Ok !!!	leg on one (1)	
	side $\rho_{s provid}$	$d_{red} = \frac{4*A}{D_r}$	1 _v *s	= 0.0	where Av rep 01081	oresent spiral Ok !!!	leg on one (1)	
Ma	side $\rho_{s provid}$	$\frac{4*A}{D_r}$ spacing	1 v *s	= 0.0	where Av rep	oresent spiral Ok !!!	leg on one (1)	
Ma	side $\rho_{s provid}$ aximum 1	$\frac{4*4}{D_r} = \frac{4*4}{D_r}$ spacing . S should not	$\frac{1_{v}}{*s}$:	= 0.0 or than $1/4$	where Av rep 01081	oresent spiral Ok !!! n of member (=D/4) OK!	
Ma	side $\rho_{s provid}$ aximum 1 2	$\frac{4*A}{D_r} = \frac{4*A}{D_r}$ spacing . S should not . S should not	$\frac{1}{s}$: be greate be greate	= 0.0 or than 1/4 or than 100	where Av rep 01081 min dimension Omm	oresent spiral Ok !!! n of member (=D/4) OK! OK!	
Ma	side $\rho_{s provid}$ aximum 1 2 inimum 1	$\frac{4*A}{D_r}$ spacing . S should not . S should not clear spacing Sc should not	$\frac{A_v}{*s}$: be greate be greate	= 0.4 or than $1/4$ or than 100	where Av rep 01081 min dimension Dmm	oresent spiral Ok !!! n of member (eg on one (1) =D/4) OK! OK!	
Ma Mi	side $\rho_{s provid}$ aximum 1 2 inimum 1 2 1 2	$\frac{4*A}{D_r}$ spacing . S should not . S should not clear spacing . Sc should not . Sc should not	$\frac{A_{\nu}}{*s}$: be greate be greate t be less t t be less t	= 0.4 or than 1/4 or than 100 than 25mi than 1.33	where Av rep 01081 min dimension Dmm n x aggregate siz	oresent spiral Ok !!! n of member (ze (1.33 x 25m	=D/4) OK! OK! OK! OK!	
Ma Mi	side $\rho_{s provid}$ aximum 1 2 inimum 1 2	$\frac{4*A}{D_r}$ spacing . S should not . S should not clear spacing . Sc should not . Sc should not	$\frac{A_{\nu}}{*s}$: be greate be greate t be less t t be less t	= 0.0 or than 1/4 or than 100 than 25mi than 1.33	where Av rep 01081 min dimension Dmm m x aggregate siz	oresent spiral Ok !!! n of member (ze (1.33 x 25m	=D/4) OK! OK! OK!	•DGCS12.5.2.4
Ma Mi	side $\rho_{s provid}$ aximum 1 2 inimum 1 2 Transv	$\frac{4*4}{D_r}$ spacing . S should not . S should not clear spacing . Sc should not . Sc should not verse reinforc	$\frac{A_v}{*s}$ = = be greate be greate of be less t t be less t ement for	= 0.0 or than $1/4$ or than 100 than 25mi than 1.33 or outsid	where Av rep 01081 min dimension Dmm x aggregate siz e region	oresent spiral Ok !!! n of member (ze (1.33 x 25m	=D/4) OK! OK! oK! m) OK!	•DGCS12.5.2.4
Mi Mi	side $\rho_{s provid}$ aximum 1 2 inimum 1 2 Transv ds	$\frac{4*4}{D_r}$ spacing . S should not . S should not clear spacing . Sc should not . Sc should	$\frac{A_{\nu}}{*s}$ be greate be greate be greate of be less t of be less t ement for ls	= 0.4 or than 1/4 or than 100 than 25mm than 1.33 or outsid	where Av rep 01081 i min dimension 0mm m x aggregate siz e region	oresent spiral Ok !!! n of member (ze (1.33 x 25m 20 mm	=D/4) OK! OK! OK! um) OK!	•DGCS12.5.2.4
Mi Mi	side $\rho_{s provid}$ aximum 1 2 inimum 1 2 Transv ds A_{sp}	$\frac{4*A}{D_r}$ spacing . S should not . S should not clear spacing . Sc should not . Sc should not . Sc should not verse reinforc size of spira area of shea	$\frac{A_{\nu}}{*s}$ be greate be greate be greate to be less to the less to ement for ls r reinforc	= 0.0 or than 1/4 or than 100 than 25mm than 1.33 or outsid	where Av rep 01081 i min dimension 0mm m x aggregate siz e region	oresent spiral Ok !!! n of member (20 mm 314 mm^2	=D/4) OK! OK! OK! um) OK!	•DGCS12.5.2.4

6.6 Verification of Pile Cap Resistance

6.6.1 Calculate the inelastic hinging forces:

6.6.2 Verification of flexure resistance

Design parameters:			
Bottom main reinf., db	<mark>36</mark> mm	Ab = 1017	
Pile embedment	100 mm		
Concrete cover	75 mm		
Clearance of reinf from pile tip	30 mm		
b=width of footing along y-axis	<mark>8400</mark> mm		
w=width of footing along x-axis	<mark>8400</mark> mm		
Concrete comp. strength, f'c	28 MPa		
yield strenght of steel, fy	415 MPa		
a. <u>Flexure design on compression side</u> Minimum reinforcement		•	DGCS 12.4.3.3

				Commentary
$Mcr = \Upsilon_3 (\Upsilon_1 f_r) S_c$			flexural cracking moment	
where:			U	
fr =		3.33 MPa	$(fr = 0.63*\sqrt{fc})$	
$\Upsilon_{1=}$		1.6	for all other concrete	
$\Upsilon_{3=}$		0.67	for fy =415 Mpa reinforcemen	t
$S_{c} = (b*hf^{2})/6$		5.6 m^3	Section modulus	
Mcr =		20,012.55 kN-m		
Mu_min =1.33*Md =		25,931.81 kN-m		
Mu_min = min(Mcr, Mu_min)	=	20,012.55 kN-m		
Md=		19,497.60 kN-m		
Condition: if((Md > Mu_min), M	Id, Mu_min)			
Therefore, Md =		20,012.55 kN-m		
Compute for reinforceme	nt			•DGCS 12 4 2 1
β1 =		0.85		00003 12.4.2.1
de = hf-pile embedment-clearance-db	/2 de=	1852 mm		
m1=0.85*f'c/fy=	m1	0.057		
m2=2/(0.85*f'c)=	m2=	$0.084 \text{ mm}^2/\text{N}$		
$Rn = Md/(\emptyset b*de^2) =$	Rn =	0.772 MPa		
$\rho = m1*(1-sqrt(1-m2*Rn)) =$	ρ =	0.00189		
$As = \rho * b * de =$	As=	29,416.44 mm ²		
Spacing of bars =Ab*b/As	S=	291 mm	say S_prov = 200 mm	Conservative
As_prov =Ab*b/S_prov	As_prov =	42729.1 mm ²		spacing is assumed
c=As_prov *fy/(0.85*f`c*β1*b	c=	104 mm		design requirements
$a=c*\beta 1 =$	a=	89 mm		
Mn =(As_prov*fy)(de-a/2) =	Mn=	32,054.32 kN-m		
• Check net tensile strain, ξt				
$\xi t = 0.003*((de/c)-1) =$	ξt=	0.050 Tension (Controlled!!!, Reduction factor =0.9	
	-			
 Check flexural Capacity 	ØMn =	28,848.89 kN-m		• DGCS 12.4.3.4
	c/c	l= 1.44 Section is	safe!!!	
• Check control cracking by distrib	ution of reinfor	cement		
Note: This provision applies to all men	bers when tension	on in the cross section exe	ceeds the 80% of the modulus rupture	
@ applicable service limit load combin	ation.			
				• DGCS 12.1.1.6
Moment demand at Service 1 Limit	Ms =	2,525.00 kN-m	<< <service combination!!!<="" limit="" load="" td=""><td>• DGCS 12 4 3 4</td></service>	• DGCS 12 4 3 4
$fr = 0.52*\sqrt{fc}$	fr =	2.75 MPa		000012.1.0.1
	80% fr =	2.20 MPa		
fs = Ms/Sc	fs=	0.45 MPa		
checking:	fs < 80% fr	Section 12.4.3.4 ne	ed not to satisfy	

	e • e					Commentary				
• Check for minimum spacing of	• Check for infinition spacing of removement For cast in place concrete, clear distance between paraller bars in a layer shall not be less than:									
For cast in place concrete, clear of			s in a laye	f shall not be less	unan:					
• 1.5 x nominal diam of o	ars =	27.5 mm	ili Së	tisfied the required	d min. spacing!!!					
 1.5 x max. size of aggre 28mm 	egates =	37.5 mi	m sa	tisfied the required	d min. spacing!!!					
• 3811111	=	58 IIII	in se	iusried the required	u min. spacing!!!					
• Check for maximum spacing	of reinforcen	ent (for walls	and slab	s)						
■ s < 1.5 x hf	=	3000 mr	m sa	tisfied the required	d max. spacing!!!	• DGCS 12.7.5.2				
• 450mm	=	450 mr	m sa	tisfied the required	d max. spacing!!!					
b. <u>Flexure design on ten</u>	sion side									
						• DGCS 12.4.3.3				
Minimum reinforcement										
Mu_min =		20,012.55	kN-m							
Md=		9,878.40	kN-m							
Condition: if((Md > Mu_min	n), Md, Mu_mi	n)								
Therefore, Md =		20,012.55	kN-m							
Compute reinforcement										
Top main reinf., db		28	<mark>8</mark> mm	Ab =	$= 615 \text{ mm}^2$					
de = hf-concrete cover- $db/2 =$	de=	1911	l mm							
m1=0.85*f'c/fy=	m1	0.057	7							
m2=2/(0.85*f'c)=	m2=	0.084	4 mm ² /N							
$Rn = Md/(\emptyset b*de^2) =$	Rn	0.725	5 MPa							
$\rho = m1*(1-sqrt(1-m2*Rn)) =$	$\rho =$	0.0018	3							
$As = \rho * b * de =$	As=	28,478.76	mm^2							
Spacing of bars =Ab*b/As	S=	182	2 mm	say S_prov =	<mark>175 </mark> mm					
As_prov =Ab*b/S_prov	As_prov =	29541.1	1 mm^2							
c=As_prov *fy/(0.85*f'c*β1*b	c=	72	2 mm							
$a=c*\beta 1 =$	a=	61	l mm							
$Mn = (As_prov*fy)(de-a/2) =$	Mn=	23,052.14	kN-m		Stru					
 Check net tensile strain, ξt 										
$\xi t = 0.003*((de/c)-1) =$	ξt=	0.076	6 Tension	Controlled!!!, Red	uction factor =0.9					
 Check flexural Capacity 	ØMn =	20,746.92	kN-m							
		c/d 1.04	Section i	s safe!!!						
Note: No need to investigate DGCS I	2.4.3.4, 12.7.3	1.1 and 12.7.3.2.	Already so	utisfied above.						

6.6.3 Verification of shear resistance

DGCS provides 3 procedures of determining shear resistance:	• DGCS 12.5.3
Simplified procedure for non-prestressed sections	
• General procedure <<<< this procedure is applicable for design of footing	• DGCS 12.5.3.3.2
and slab for larger thickness	
Simplified procedure for prestressed and prestressed sections	

1			Commentary
where :	0.878.400.000.00 N.mm	(-hh-t	
Mu =	7,070,400,000.00 IN-IIIII	to be taken less than IVu-VpI *dv, N-mm)	
dv =	1880 mm		
Nu =	0.00 N		
Vu=	6,174,000.00 N	(absolute value)	
Es=	200,000.00 MPa		
As =	29541 mm ²		
EsAs=	5,908,224,000.00 N		
EpAps =	0		
Apsfpo =	0 for non-	prestressed concrete	
Vp =	0		
IVu- VpI * $dv =$	11,609,211,896.47 N-mm		
therefore $Mu =$	11,609,211,896.47 N-mm		
$\mathcal{E}s =$	0.00209		
Es limitations =	$-0.4 \ge 10^{-3} \le \varepsilon \le 0.001$		
therefor use $\mathcal{E}s =$	0.001		
Sxe = Sx [35/(ag+16)], mm			
where :			
ag =size of aggregates	20 mm		
Sx =	350 mm		
Sxe=	340 mm		
Limitations:	300mm≤Sxe≤2025	ōmm	
	limit to min.:	OK!!!	
	limit to max.:	OK!!!	
$\beta =$	2.670		
Vc=	18520 kN		
Vs=	0.0 kN	assume no transverse reinf.	
Vn1 =	18520 kN		
Vn2 =	110564 kN		 It is a design
Ultimate shear resistance = \emptyset Vn	16668 kN		approach not to
Shear demand, Vd =	6174 kN		reinforcement for
a Check shear at compression	c/d = 2.70 Section	is safe in shear!!!	footing, walls or slab, hence Vs= 0 kN.
<u>a. Check shear at compression</u>	But		
Vu=Vd = F1_total =	12186.00 kN		
Note: By inspection, approximately 1/4	of pile		
section is the critical shear.			

The crack spacing parameter, Sxe, shall be deter	mined as :		Commentary
Sxe = Sx [35/(aq+16)]. mm			
where :			
ag =size of aggregates	20 mm		
Sx	<mark>350</mark> mm		
Sxe=	340 mm		
Limitations:	300mm≤Sxe≤20	025mm	
	limit to min.:	OK!!!	
	limit to max .:	OK!!!	
$\beta =$	2.670		
Vc=	17804 kN		
Vs=	0.0 kN	assume no transverse reinf.	
Vn1 =	17804 kN		
Vn2 =	106290 kN		
Ultimate shear resistance = \emptyset Vn	16024 kN		
Shear demand, Vd =	6093 kN		
	c/d = 2.63 Section	on is safe in shear!!!	

6.6.4 Shrinkage and temperature reinforcement

Rainforcement for shrin	Prinforment for shrinkase and temperature strasses shall be previded near						
Keinjorcemeni jor shrin							
surfaces of concrete expo							
concrete. For the pile cap	p, basrs shall be provided at th	he perimeter side of the pile					
cap.							
Ast $\Rightarrow 0.75$ MPa x ((bxh)/2(b+h)fy						
where:							
b = least width of co	omponent section, mm	8400 mm					
h=least thickness of	component section, mm	2000 mm					
a) Ast $=> 0.75$ MPa x ((bxh)/2(b+h)fy	$1.460 \text{ mm}^2/\text{mm}$					
b) Limitations: 0.223 <a< td=""><td>Ast<1.27</td><td></td><td></td></a<>	Ast<1.27						
if Ast > 1.27, use 1.2	27 as the max. limit or if Ast < 0.22	3, use 0.223 as min. limit					
therefore Ast =	1.27 mm ² /mm use max limit!!	? ?					
try diameter db =	20 mm						
Ab =	314 mm^2						
Spacing, S=	247 mm						
say S_prov =	350 mm should match S	X					
: Ast=Ab/S_prov =	$0.897 \text{ mm}^2/\text{mm}$ satisfied max. lin	mitations!!!					
where :							
a) S_prov should not	t be greater than 3 X thickness, or 4	50mm					
b) S_prov should no	t be greater than 300 for walls and f	$\hat{c}ootings > 450mm$ thk.					
c) S_prov should be	300mm for other components > 90	0mm thick.					
therefore use $S = 30$	0mm for shrinkage and temperature	e bars to satisfy item c)					

c/d =

6.6.5 Verification of two-way shear action (punching shear) for pile

6.6.6 Verification of two-way shear action (punching shear) for column

5.84 Pile is safe in punching shear!!!

Factored axial Pu of column The nominal shear resistance, V_n in N is less	15183 kN er of the following :	
$V_n = (0.17 + (0.33/\beta_c)(f'c^{0.5}b_o d_v)$	OR $V_n = (0.33)(f'c^{0.5}b_o d_v)$	DGCS Eq 12.10.3.5-1
where: β_c = ratio of long side to short side of the foot bo = perimeter of the critical section, mm dv = effective shear depth, mm	ting which the concentrated load or reaction	n is transmitted
de = a= hf= Dcol =diam of column, mm =	1852 mm 89 mm 2000 mm 2600 mm	

		Commentary
$\beta c =$	1 (i.e. for square footing)	
dv=	1808 mm	
bo =	13840 mm	
Vn ₁ =	66191 kN	
$\emptyset Vn_1 =$	59572 kN	
	OR	
$Vn_2 =$	48335 kN	
	43501 kN	
Ult.punching resistance = \emptyset Vı	43501 kN	
c/d =	2.87 Column is safe in punching shear!!!	

6.7 Pile Stability and Structural Resistance

6.7.1 Determine the design forces of footing from section 6.6 Verification of Pile Cap Resistance

6.7.2 Determine pile springs and geometric properties

a. Horizontal pile spring constant of pile (KH)

Note: The coefficient of subgrade reaction shall be determined, in principle, by using the modulus of deformation obtained from a variety of surveys and tests by considering the influence of loading width of foundations and other relevant factors:

	BSDS Table C.4.4.2-1 Modulus of Deformation E_0 a	nd a]						
Modulus	of deformation E_0 to be obtained by means of the following testing methods	C	ı							
Method	Definition	Ordinary	Earthquake							
Method A	A value equal to 0.5 of the modulus of deformation to be obtained from a repetitive curve of a plate bearing test using a rigid disc of 30cm. in diameter.	1	2							
Method B	Modulus of deformation to be measured in the bore hole.	4	8							
Method C	Modulus of deformation to be obtained by means of an unconfined or triaxial compression test of samples.	4	8							
Method D	Method D Modulus of deformation to be estimated from $E_0 = 2,800*N$ 1 2									
The coe Equation	fficient of horizontal subgrade reaction should be on C.4.4.2-4	btained l	by using	BSDS						

	Commentary
$k_H = k_{HO} \left(\frac{B_H}{0.3} \right)^{-3/4}$	BSDS EqC.4.4.2-4
where :	
$k_{\rm H}$ coefficient of horizontal subgrade reaction (kN/m ³)	•BSDS section 4
k_{HO} coefficient of horizontal subgrade reaction (ktvm) coefficient of horizontal subgrade reaction coresponding to the value obtained by the plate bearing test using a rigid disc of diameter 0.3m, kHO = (a*E0/0.3) (kN/m3).	
B_H equivalent loading width of foundation to be obtained from BSDS Table C.4.4.2-2 (m)	
<i>E</i> ₀ modulus of deformation at the design location, measured or estimated by the procedures in Table C.4.4.2-1	
A_H loading area of foundation perpendicular to the load direction (m ²)	
<i>D</i> loading width of foundation perpendicular to the load direction (m)	
B_e effective loading width of foundation perpendicular to the load direction (m)	
L_e effective embedment depth of a foundation (m)	
1/b ground depth relating to the horizontal resistance and equal to or less than the effective embedment depth (m)	
<i>b</i> characteristic value of foundation	
<i>EI</i> flexural stiffness of foundation (kN-m ²)	
$K_{HP} = k_H A_{HP}$	
	BSDS EqC.4.4.3-9
where :	
K_{HP} horizontal spring constant of pile section corresponding to area A _{HP} (kN/m)	
A_{HP} effective projected vertical area of the ground corresponding to pile spring K _{HP} (m2)	
When analyzing the ground resistance of a pile foundation as a linear spring, the equivalent loading width B_H should take a value of $(D/b)^{1/2}$.	
b. Geometric properties of piles	
Select pile section:	•Cast-in-place rc piles are common
Circular Section	use in the
Square Section	note the Bored piles
Select Pile Installation Method :	here refer to bored
Driven Piles (Blow Method)	according to Japan
Driven Piles (Vibro-Hammer Method)	method.
Cast-in-place RC Piles	
Bored Piles	
Pre-Boring Piles	
Steel Pile Soil Cement Piles	

nnut Pil	e Dimensio	n : Diamet	er			1 20	m				Commentary
nnut Nu	imber of Pi	les	~1				niles				
input Pil	e Length ·	105				13.00	m				•The initial pile
Calculat	te Section	Propertie	s :			15.00					into hard strata
Cross-section Area						1.131	m^2				@minimum of 1.m depth.
Perimeter	r of Pile :					3.770	m				
Pile Mon	nent of Iner	rtia :				0.102	m ⁴				
Pile Flex	ural Stiffne	ss :				2.75E+06	kN-m ²				
Concret	e Material	Propertie	es:				KI (III				
Design C Unit Den	Compressive sity for Co	e Strength ncrete	at 28 th da	у		28 2400	N/mm ² kg/m ³				
Unit weis	ght for Reir	nforced Co	oncrete			24	kN/m^3				
Young's	Modulus of	f Elasticity	,			2.70E+07	kN/m^2				
Reinford	cement Ma	terial Pro	operties :				KI WIII				
Minimun	n Yield Stre	ength	•			415	N/mm ²				
Jltimate	Tensile Str	ength				620	N/mm ²				
Young's	Modulus of	f Elasticity	r			2.00E+08	kN/m^2				
Method u	used to detended in a	ermine Mo leterminin	dulus of I g subgrad	Deformation	on :] Ordinary	Method D Condition		BS	DS Table	C4.4.2-1	
Method ı Limit Sta Coefficie Jnit weiş	used to dete ate used in o ent to be uso ght of wate	ermine Mo determinin ed for esti r	dulus of I g subgrad mating sul	Deformation e coeff. bgrade rac	on :] Ordinary tion :	Method D Condition 1 10	kN/m ³	BS.	DS Table DS Table	C4.4.2-1 C4.4.2-1	
Method ı Limit Sta Coefficie Jnit weiş Soil	used to detended in of the used in of ent to be use ght of watended Layer	ermine Mo determinin, ed for esti r	dulus of I g subgrad mating sul Unitw	Deformation e coeff. bgrade rac veight	on : Ordinary etion :	Method D Condition 1 10 $(1/b_1)$ -	kN/m ³	BS. BS.	DS Table DS Table	C4.4.2-1 C4.4.2-1	
Method 1 Limit Sta Coefficie Unit weig Soil Layer	used to detente used in o ent to be use ght of wate Layer Thicknes	ermine Mo determinin ed for esti r N-Value	dulus of I g subgrad mating sul Unitw Y _t	Deformation e coeff. bgrade rac veight	on : Ordinary etion : aE_0	Method D Condition 1 10 $(1/b_1)$ - d_i	kN/m ³	BS_{i} BS_{i} $aE_{0} *t_{i}$	DS Table DS Table Layer	<i>C4.4.2-1</i> <i>C4.4.2-1</i> Depth	
Method u Limit Sta Coefficie Unit weig Soil Layer Type	used to dete ate used in o ent to be use ght of wate Layer Thicknes m	ermine Mo determinin ed for esti r N-Value Average	dulus of I g subgrad mating sul Unitw Y _t	Deformation e coeff. bgrade rac veight Y	on : Ordinary Ordinary etion : aE_0 kN/m^2	Method D Condition 1 10 $(1/b_1)$ - d_i m	kN/m ³ t _i m	BS. BS. aE ₀ *t _i kN/m	DS Table DS Table Layer	<i>C4.4.2-1</i> <i>C4.4.2-1</i> Depth	
Method u Limit Sta Coefficie Unit weig Soil Layer Type	used to detente used in of ent to be usinght of waten Layer Thicknes m	ermine Mo determinin, ed for esti r N-Value Average	dulus of I g subgrad mating sul Unitw Y _t	Deformation e coeff. bgrade rac veight Y	on : Ordinary tion : aE_0 kN/m^2	Method D Condition 1 10 $(1/b_1)$ - d_i m	kN/m ³ t _i m	BS. BS. aE ₀ *t _i kN/m	DS Table DS Table Layer	<i>C4.4.2-1</i> <i>C4.4.2-1</i> Depth	
Method u Limit Sta Coefficie Unit weiş Soil Layer Type Clay	used to detente used in or ent to be used ght of watent Layer Thicknes m 1.00	ermine Mo determinin ed for esti r N-Value Average	dulus of I g subgrad mating sul Unitw Υ_t 18.0	Deformation e coeff. bgrade rac reight Y' 8.0	on : Ordinary etion : aE_0 kN/m^2 30800	Method D Condition 1 10 $(1/b_1)$ - d_i m 3.103	kN/m ³ t _i m 1.000	BS. BS. aE ₀ *t _i kN/m 30800.00	DS Table DS Table Layer	C4.4.2-1 C4.4.2-1 Depth	
Method 1 Limit Sta Coefficie Unit weig Soil Layer Type Clay Clay	used to detente used in o ent to be used ght of wate Layer Thicknes m 1.00 4.00	ermine Mo determinin ed for esti r N-Value Average 11 17	dulus of I g subgrad mating sul Unitw Υ_t 18.0 18.0	Deformation e coeff. bgrade rac yeight Y' 8.0 8.0	on : Ordinary Ordinary etion : aE_0 kN/m^2 30800 47600	Method D Condition 1 10 $(1/b_1)$ - d_i m 3.103 -0.897	kN/m ³ t _i m 1.000 3.103	BS. BS. aE ₀ *t _i kN/m 30800.00 147687.58	DS Table DS Table Layer 1	C4.4.2-1 C4.4.2-1 Depth n 1.00 5.00	
Method u Limit Sta Coefficie Unit weiş Soil Layer Type Clay Clay Clay	used to detente used in of ent to be usinght of waten Layer Thicknes m 1.00 4.00 4.00	ermine Mo determinin, ed for esti r N-Value Average 11 17 22	dulus of I g subgrad mating sul Unitw Υ_t 18.0 18.0 18.0 18.0	Deformation e coeff. bgrade rac veight Y' 8.0 8.0 8.0 8.0	on : Ordinary etion : aE_0 kN/m^2 30800 47600 61600	Method D Condition 1 10 $(1/b_1)$ - d_i m 3.103 -0.897 -4.897	kN/m ³ <i>t_i</i> <u>m</u> <u>1.000</u> <u>3.103</u> 0.000	BS. BS. aE ₀ *t _i kN/m 30800.00 147687.58 0.00	DS Table DS Table Layer 1	C4.4.2-1 C4.4.2-1 Depth n 1.00 5.00 9.00	
Method u Limit Sta Coefficie Unit weiş Soil Layer Type Clay Clay Clay Rock	Layer Thicknes M 1.00 4.00 4.00	ermine Mo determinin ed for esti r N-Value Average 11 17 22 50	dulus of I g subgrad mating sul Unitw Υ_t 18.0 18.0 18.0 20.0	Deformation e coeff. bgrade rac reight Y' 8.0 8.0 8.0 8.0 10.0	on : Ordinary etion : aE_0 kN/m^2 30800 47600 61600 140000	Method D Condition 1 10 $(1/b_1)-d_i$ m 3.103 -0.897 -4.897 -8.897	kN/m ³ <i>t_i</i> <u>m</u> <u>1.000</u> <u>3.103</u> 0.000 0.000	BS. BS. aE ₀ *t _i kN/m 30800.00 147687.58 0.00 0.00	DS Table DS Table Layer 1	C4.4.2-1 C4.4.2-1 Depth n 1.00 5.00 9.00 13.00	
Method u Limit Sta Coefficie Unit weiş Soil Layer Type Clay Clay Clay Clay Clay Rock	used to detente used in of ent to be usinght of waten Layer Thickness m 1.00 4.00 4.00	ermine Mo determinin, ed for esti r N-Value Average 11 17 22 50	dulus of I g subgrad mating sul Unitw Υ_t 18.0 18.0 18.0 20.0	Deformation e coeff. bgrade rac veight Υ' 8.0 8.0 8.0 10.0 -10.0	on : Ordinary etion : aE_0 kN/m^2 30800 47600 61600 140000	Method D Condition 1 10 (1/b ₁)- d _i m 3.103 -0.897 -4.897 -8.897	kN/m ³ <i>t_i</i> <u>m</u> <u>1.000</u> <u>3.103</u> <u>0.000</u> <u>0.000</u>	BS. BS. aE ₀ *t _i kN/m 30800.00 147687.58 0.00 0.00	DS Table DS Table Layer 1	C4.4.2-1 C4.4.2-1 Depth n 1.00 5.00 9.00 13.00	
Method u Limit Sta Coefficie Unit weiş Soil Layer Type Clay Clay Clay Clay Rock	used to detente used in orent to be used in order or	ermine Mo determinin, ed for esti r N-Value Average 11 17 22 50	dulus of I g subgrad mating sul Unitw Υ_t 18.0 18.0 18.0 20.0	Deformation e coeff. bgrade rac reight Y' 8.0 8.0 8.0 8.0 10.0 -10.0	on : Ordinary etion : aE_0 kN/m^2 30800 47600 61600 140000	Method D Condition 1 10 $(1/b_1)$ - d_i m 3.103 -0.897 -4.897 -8.897	kN/m ³ <i>t_i</i> m 1.000 3.103 0.000 0.000	BS. BS. aE ₀ *t _i kN/m 30800.00 147687.58 0.00 0.00	DS Table DS Table Layer	C4.4.2-1 C4.4.2-1 Depth n 1.00 5.00 9.00 13.00	
Method u Limit Sta Coefficie Unit weiş Soil Layer Type Clay Clay Clay Rock Rock	used to detente used in or ent to be used ght of wate Layer Thicknes m 1.00 4.00 4.00	ermine Mo determinin ed for esti r N-Value Average 11 17 22 50	dulus of I g subgrad mating sul Unitw Υ_t 18.0 18.0 20.0	Deformation e coeff. bgrade rac veight Υ' 8.0 8.0 8.0 10.0 -10.0	on : Ordinary etion : aE_0 kN/m^2 30800 47600 61600 140000	Method D Condition 1 10 $(1/b_1)$ - d_i m 3.103 -0.897 -4.897 -8.897	kN/m ³ <i>t_i</i> m 1.000 3.103 0.000 0.000	BS. BS. aE ₀ *t _i kN/m 30800.00 147687.58 0.00 0.00	DS Table DS Table Layer 1	C4.4.2-1 C4.4.2-1 Depth n 1.00 5.00 9.00 13.00	

A_{n}	net cross-sectional area of nile (m^2)		Commentary				
E_p	Young's modulus of pile (kN/m^2)						
Ĺ	pile length (m)						
D	pile diameter (m)						
Embedr	nent Ratio, L/D	10.83					
Note:	-1/D < 10 I/D = 10						
гогги	es L/D<10, L/D=10						
Proport	ional Coefficient, $\alpha = 0.031 (L/D) - 0.15$	5 0.186					
Axial Sp	pring Constant of Pile, K_V	436512.22 kN/m					
d. Ra	dial spring constrants pf pile (K1, K	⁽² , K3, K4)					
Note: T	he radial spring constants K1 to K4 of	a pile are:					
K1, K3	radial force and bending moment (kN when displacing a unit displacement from rotating (kN/m)	N-m/m) to be applied on a pile head in the radial direction while keeping it					
K2, K4	radial force and bending moment (k) when rotating the head by a unit rotation it from moving in a radial direction (k)	N-m/rad) to be applied on a pile head on in the radial direction while keeping kN/rad)					
Note: If depths a compute	the coefficient of horizontal subgrade and if the embedded depth of a pile is ed from BSDS Table C.4.4.3-2	reaction is constant irrespective of the sufficiently long, the constants can be					
Specify I	imit State used in design : During	v Farthouake					
Coefficie	nt to be used, a :	2					
Character	ristic value of foundation, b' :	0.290 m ⁻¹					
Pile lengt	h above design ground surface, h :	0 m					
b'*L _e	:	3.77 Piles with semi-infinite length					
Select res	strictive condition of						
Rigid F	Frame of Pile Head						
	Frame of Pile Head						
1			1				
							Commentary
--	--	------------	--------------	-----------	-----------	--	------------
Rigid Frame of Pile Head							
Hinged Frame of Pile Head	BSDS Table C4.4.3-2 - Hayashi Chang Theory						
		Ri	Rigid Hinged				
Radial Spring Constants of Piles, K1 :	267724.49 kN/m	803175.46	267724.49	133862.24	133862.24		
Radial Spring Constants of Piles, K ₂ :	461815.26 kN-m/m	1385449.23	461815.26	0.00	0.00		
Radial Spring Constants of Piles, K3:	461815.26 kN/rad	1385449.23	461815.26	0.00	0.00		
Radial Spring Constants of Piles, K ₄ :	1593229.95 kN-m/rad	1593229.95	1593229.95	0.00	0.00		

6.7.3 Determine displacement and reaction force

Note: Pile reactions and displacements shall be evaluated considering the properties of the pile structure and the ground. In the displacement method, the coordinate is formed with the origin set at an arbitrary point O of the foundation. The origin O may be selected from arbitrary points, but it is recommended to coincide it with the centroid of the pile group below the pile cap/footing.	
	BSDS EqC.5.4.3.7-1
$A_{xx} * d_x + A_{xy} * d_y + A_{xa} * a = H_o$	
$A_{yx} * d_x + A_{yy} * d_y + A_{ya} * a = V_o$	
$A_{ax} * d_x + A_{ay} * d_y + A_{aa} * a = M_o$	
where:	
H_a lateral loads acting at the bottom of pile dx lateral displacement from origin O, m	
V_a vertical loads acting at the bottom of pil dy vertical displacement form origin O, m	
$M_{\rm c}$ moment (external force) at the origin O a rotational angle of the footing at the origin O rad	
The displacements $(d_x, d_y, \text{ and } a)$ below are derived by solving BSDS Equation C5.4.3.7-1 and C5.4.3.7-2 :	
$d_x = \frac{H_o *A_{aa} - M_o *A_{xa}}{A_{xx} *A_{aa} - A_{xa} *A_{ax}}$	BSDS EqC.5.4.3.7-3
$d_y = \frac{V_o}{A_{yy}}$	
$a = \frac{H_{o} *A_{ax} + M_{o} *A_{xx}}{A_{xx} *A_{aa} - A_{xa} *A_{ax}}$	
	1

BS	BSDS C5.4.3.7-2 COEFFICIENTS FOR DISPLACEMENT CALCULATION											
Row	No. of Piles	x _i	q_i	Ауу	Axx	Axa	Aax	Aaa				
1	3	3	0	1309537	803173	-1E+06	-1385446	16565520				
2	2	0	0	873024	535449	-923631	-923631	3186460				
3	3	3	0	1309537	803173	-1E+06	-1385446	16565520				
			Sum =	3492098	2141796	-3694522	-3694522	36317499				

$\cos(q_i)$	sin(q _i)
1	0
1	0
1	0
1	0
1	0
1	0
1	0

a. Calculation for Displacement:

Lon	gitudinal	Displacen	nent					
	Displacement							
Location	Lateral	Vertical	Rotation al					
	d_x	d_y	а					
	m	m	rad					
Origin O	0.0063	0.0027	0.0021					

b. Calculation of Reaction:

By using the displacements at the footing origin O obtained from the results of the above calculations, the pile axial force, radial force, and moments acting on each pile head can be obtained using the following equations:

$P_{Ni} = K_V * d_{yi}'$
$P_{Hi} = KI * d_{xi} ' - K_2 * a$
$M_{ti} = -K_3 * d_{xi}' + K_4 * a$
$d_{xi}' = d_x * cosqi - (d_y + ax_i) * sinq_i$
$d_{yi}' = d_x * sinq_i + (d_y + ax_i) * cosq_i$

BSDS EqC.5.4.3.7-4

BSDS EqC.5.4.3.7-5

Commentary where: d_{xi} radial displacement at the i-th pile head, m d_{vi} axial displacement at the i-th pile head, m x-coordinate of the i-th pile head, m X_i vertical axis angle from the i-th pile axis for battered pile, degree q_i P_{Ni} axial force of the i-th pile, kN P_{Hi} radial force of the i-th pile, kN M_{ti} moment as external force acting on the i-th pile head, kN-m Summary of Pile Reaction due to Long'l Direction Radial Axial Moment Number q_i X_i Pile of Piles P_{Ni} P_{Hi} M_{ti} sin(q_i) $cos(q_i)$ deg. kN kN kN-m m -1525.4 3 -3.00 0 -1525.35 725.00 388.27 0 1168.75 1 1 2 2 0.00 0 1168.75 725.00 388.27 1 3862.85 0 3 3 3.00 0 3862.85 725.00 388.27 1 0 1 0 1 0 1 0 0 1 8 Maximum Axial Force for Capacity verification, P Ni-max 3862.85 kN Minimum Axial Force for Capacity verification, P_{Ni-min} -1525.35 kN Graphing of Reaction Force and Displacement of each pile PILE EMBEDDED IN THE GROUND (h = 0)**Rigid Pile Head ConnectionHinged Pile Head Connection** Parameters • In practice, the connections of piles Depth kN-m into footing is rigid Mt 388.272 Deflection Moment Shear Deflection Moment Shear connection. Ph 725.000 kN Therefore, the values under the Е 2.70E+07 kN-m kN kN-m kN m mm mm kN/m² hinged head maybe I 0.102 m^4 ignored. -725.00 0.00 6.26 -388.27 5.42 0.00 -725.00 b' 0.290 m⁻¹ -388.3

6.7.4 Verification of pile stability

										Commenter
where:										Commentary
<i>R</i>										
A n	area	of pile t	in	ue 109 01	p,					
L_i										
Ji										
c. Th cor $P_R = \emptyset P$	BSDS Eq.5.4.3.4-1									
where:										
P_{R}	factored	axial pull-c	out resistar	nce of pile	, kN					
P_n	nominal a	ixial pull-o	ut resistan	ce, kN						
W	effective	weight of	pile. kN	,						
ø	resistance	e factor fo	r pile unde	er extreme	event limi	t state	0.5		-BSDS Article 5.4.1(5)	
			1							
d. Est	timatio	on of N	ominal	End B	Bearing	g Resist	tance Iı	ntensity	r (qd)	
For Cast-	in-place R	C Piles : n	ominal end	d bearing 1	esistance	intensity	5000	kN/m^2		
	Note: On	the basis	of the rece	ent results	of loading	tests on c	ast-in-plac	e RC piles,	the nominal end bearing	
	resistance	e intensity	may take 1	the value of	of 5,000 k.	N/m2, whe	en a fully h	ardened stu	rdy gravelly ground with an	
	N value o	of 50 or la	rger and w	vith a thick	kness of 5	m or grea	ter is select	ed as suppo	orting layer.	
e. Est	timatio	n of Sl	naft Re	sistan	re Inte	nsitv fi	acting	on Pile	Skin	
Cast-ir	n-place	RC Pile	s	515tun		iisity ii	ucung			
	- r		~							
For Sa	indy So	il: 5	$SN (\leq 2)$	00)						
For Co	ohesive	Soil : c	or 101	N (≤ 15	0)					
		Lavan		``	, 				1	
N-th	Soil	Thickness	N-Value	g'	L _i *g'*A	fi		$U^*L_i *f_i$		
Layer	Layer	Li		0	р	JU	DE	*DE	pull-out force, kN	
	гуре	m	Average	kN/m ³	kN	kN/m ²		kN/m ²		
									P _{Ni} - min	
1	Clay	1.000	11	8.0	9.05	110	1	414.69		DE is the factor for liquefaction. DE=1
2	Clay	4.000	17	8.0	36.19	150	1	2261.95	1 1	for no liquefaction
3	Clay	4.000	22	8.0	36.19	150	1	2261.95	UΣL _i f _i	potential in the specific site. The
4	Rock	4.000	50	10.0	45.24	150	1	2261.95	kN/m ²	liquefaction analysis
5	ROCK			-10.0			l		skin friction	is calculated separately.
									11	,
									i i	
									+ +	

					Commentary
Effective					
Effective	weight of	the pile w	ith soil ins	ide, Wp 205.84 kN	
Nominal s	skin frictio	on of pile		7200.53 kN	
Result of	Nominal I	Bearing Ca	pacity of S	Single Pile, R_n : 12855.40 kN	
Result of	Factored	Resistance	of Single	Pile,R _R : 8150.17 kN	BSDS pp 4-15: "In
Result of	Factored	Axial Pull-	out Resista	ance of Single Pile, P_R : -3806.10 kN	JRA, the reference displacement at the
					linear range is
f. Verifi	ication fo	r Lateral	Displace	ment at origin O	recommended to be
		1		B	the foundation width
Displa	cement			P _{Hi}	(<= 50mm), which is taken as the
Demand	Capacity	C/D Ratio	Verificatior	M, M, = 0.90*Mn	allowable
mm	mm			Longitudinal	required from the
6.26	12	1.92	OK		substructure.
g. Verifi the Pi	ication fo ile Head	or Maxim	um Axial	Resistance of Transverse	earthquake loading this value is taken as a reference and may not necessarily be
Axial	Load				adhered to and may reach as much as 5%
Demand	Canacity	C/D Ratio	Verific ation		of the foundation
kN	kN	-			wiath.
3862.85	8150.17	2.11	OK		
h. Verifi					
Axial F	Pull-out				
Demand	Capacity	C/D Ratio	Verification		
kN	kN	1			
-1525.35	-3806.10	2.50	OK		
		1			

6.7.5 Verification of pile structural resistance

Calculat					
Maximum moment					
Rigid P	Rigid Pile Head Hinged Pile Head				• The results under
l_m	M _m	t_m	\mathbf{M}_{m}		hinge pile head are
m	kN-m	m	kN-m		out. They are not
2.25	-1074.25	2.71	-806.38		applicable in this exercise.

										Commentary
c. Verification of minimum required longitudinal reinforcement										
The longitudinal reinforcement shall be verified according to the following:										
1										
when A	e:	as of los	aitu din a	lucinford	amant .	2				
A_{s}	cross-	sectional	area of	single lo	rement, 1 noitudina	nm 1 reinforc	ement mn	n^2		
A_{g}	gross a	area of p	ile, mm^2		ignaanna	110111010	ement, mi	1		
A.The lo	ongitudin	al reinfo	rcement	shall not	be less t	han 0.01				
		ρ	$A = A_a / $	$A_g > 0.$	01					
B The lo	noitudin	al reinfo	cement	shall be r	nore tha	n () ()4 tir	nes the gro	oss secti	on area	
D. The R	Jiightadalli	ρ	$=A_a/$	$A_g < 0.0$	04				on area	
D'I	D	NT 1		-						
Diameter	Bar Diameter	Number of Bars	A_s	A_{a}	A_{g}	ρ_s	Ve	rification		
									7	
m	m	No.	m ²	m ²	m ²	ratio		A	B 0 < 0.04	
1.20	0.025	24	0.00049	0.01178	1.1310	0.0104	b s	->0.01 OK	$p_s < 0.04$	
								_	-	•DGCS 12.7.11
d. Veri	fication	of mini	mum re	anired	transvei	rse reinf	orcement			
				quirea			0100110			
The ratio of	of spiral reir	nforcement	to total vol	ume of cor	crete core	masured ou	it-to-out of sp	irals shall t	be :	
A (T)										
A. The gree $0 = 0.12$	eater of : *(f' /f)	and	0 0.45	*[(_ 1] *(f'	/f) (for ci	rcular shana d	anly)		
where :	() <i>c'</i> Jy/	ana	$P_{S2} = 0.43$	[(11g/11c)		() () ()	reaut shupe (miy)		
A_{g}	gross area (of pile, mm	2							
A _c	area of core	e measured	to the outs	ide diamete	r of the spi	ral, mm ²				
B. Checkir	ig from pro	vided conf	inement, w	here As rep	oresent spir	al leg on on	e(1) side			
4*A.										
$\rho_{s3} = \frac{D_{rs}}{D_{r}}$										
where :										
A_s	area of shea	ar reinforce	ment, mm ²	representir	ıg spiral leg	g on one(1)	side.			
D_r	diameter of	pile passin	g the center	rs of the lo	ngitudinal re	einforcemer	nt, mm			
A_c	area or core	5								

Pile Diameter	A_{g}	A _c	A_s	ρ _{s2}	$\rho s1 = 0.12*(f'_{c}/f_{y})$	@max ρ _{s1} , ρ _{s2})	ρ _{s3}	Verificatior		
m	m^2	m^2	m ²	ratio	ratio	max.	ρ_s provided			
			Spiral leg							
1.20	1 1210	0.70	on one(1)	0.01228	0.00810	0.01228	0.01421	OK		
1.20	1.1310	0.79	0.000201	0.01338	0.00810	0.01558	0.01421	1.06		
 e. Verification of spacing of spirals at critical section Maximum spacing S should not be greater than 1/4 min dimension of member (=D/4) 										
	2. S sho	ould not b	e greater	than 100r	nm					
Minimum	1. Sc sh 2. Sc sh	icing iould not iould not	be less th be less th	an 25mm an 1.33 x	aggregate	e size (1.3	3 x 25mm	ı)		
Summary	of design of	of Pile:			Nur	nber of Pile	s	8		
					I	ength, m		13		
					Dia	meter, mm		1200		
					no. o	t Reinforcemi and sizes	^{nt} 24	25		
					spac Si	cing and size piral Reinf.	60	16		
Summary	of reaction	ns for pile	cap design	:						
·		-	From	Pmin :						
			Pi	le reaction	is :					
			Row $1 = F1$	= -152	5.35 kN	DESIGN	REACTION H	FOR PILECAP		
			Row $2 = F^2$	2 = 116	8.75 kN					
			Row $3 = F3$	3 = 386	2.85 kN					
			From	Pmax :						
			Pi	le reaction	IS :					
			Row $1 = F1$	-79	4.10 kN					
			Row $2 = F2$	2 = 190	0.00 kN	DESIGN	REACTION H	FOR PILECAP		
			Row $3 = F3$	8 = 459	4.10 kN	DESIGN	REACTION H	FOR PILECAP		

6.7.6 Pile Details

CHAPTER 7: SEISMIC DESIGN OF ABUTMENT

7.1 Flowchart

Figure 7.1-1 Flow Chart

7.2 General Design Conditions & Criteria

7.2.1 Bridge General Elevation & Location Map

7.2.2 Structural Conditions

- Two lane carriageways; total width = 10.50m
- 3-35m continuous AASHTO girders- Type V
- Bearings restraints: M-F-F-M (F=fixed, M=movable)
- Regular bridge (non skewed bridge)
- Pier type : single column on cast in place concrete pile
- Abutment type : cantilever type on cast in place concrete pile

Figure 7.2-2 Location Map

7.2.3 Seismic Design Requirements and Ground Conditions

Table 7.2-1 Seismic Design Requirements and Ground Conditions

Bridge Operational Classification =	OTHERS
Earthquake Ground Motion =	Level 2
Ground Type =	3
Seismic Performance Level =	3
Seismic Performance Zone =	4
Peak Ground Acceleration =	0.6g

7.2.4 Site Factors

Site Facto	ors:
Fpga =	0.88
Fa =	0.92
Fv =	1.55
As =	0.53

7.2.5 Borelogs (not to scale)

Note: BHs of Pier 1 and Abut B will be the data to use for the design of Pier 1 and Abut B.

7.2.6 Hydrology and Hydraulics Data

100 years Return Period Discharge : 3100 m³/s Water Level, DFL : 18.50m Velocity: 4.12m/s Freeboard : 0.0 m (no consideration) Drainage Area |: 2,360 sqm Computed scour depth : 6.67m

7.2.7 Design Loads

1. Perma	nent Loads	2. Tra	ansient Loads
DC =	Dead load pertaining to structural and non-structural	EQ =	Earthquake Load
	components	LL/IM	1 = Vehicular Load/Impact load
DW =	Dead load pertaining to future wearing surface	LS =	Liveload surcharge
EH =	Horizontal earth pressure	WA =	= Water Load
ES =	Earth surcharge	FR =	Friction Load
EV=	Vertical pressure from earth fill	BF=	Braking Force Load

For Seismic load analysis: Refer to BSDS Load Combinations and factors: Refer to DGCS 10.0

7.2.8 Material and Soil Property

Conc. compressive strength @ 28days, f'c	28	MPa	Angle of internal friction of soil for granular soil, \emptyset							
Reinforcing steel (ASTM 615), fy	415	MPa	Estimated value \emptyset between, 30° - 35°	30	deg					
Unit weight of concrete, δ_c	24	kN/m ³	Angle of friction between soil and wall (JRA, 2002							
Unit weight of soil, Υ_{soil}	19	kN/m ³	IRA Table C 2 2 5 seismic =	0	deg					
			static =	10	deg.					

7.3 Geometry and Load Calculations

7.3.1 Geometry of Abutment

7.3.2 Diagram of forces acting to Abutment

								1
	verify peak ground accele	eration: (1	$-k_{\rm V}$)tan($\phi - i$) = 0).577 θ =	$= atan \left(\frac{1}{1} \right)$	$\left(\frac{\kappa_h}{-\kappa_V}\right) = 1$	14.842·°	
		0.5	$577 > \kappa_h \text{ OK}$					
	verify backslope ang	i+	$atan\left(\frac{k_h}{1-k_V}\right) = 14$	4.842·°				
		ϕ :	> 14.842° OK					
		the	erefore, $k_{h} = 0.265$					
	Horizont	al forces due to i	inertial mass of	abutment, F	IR			
	COMPONENT	Weight (kN/m)	kh*Weight (kN/m)	W* (kN)	kh*V	V*		
	Railings	96.00	25.44	57.60	15.2	26		• Summary of hor'l forces due to inertial
	Sidewalk	28.80	7.63	69.12	18.3	2		loads to be applied in
	Wingwall	698.40	185.08	977.76	259	11		the design of structural
	Ammooch slob	29.40	10.19	402.20	106	05		components.
	Approach stab	58.40	10.18	405.20	100.	65		
	Backwall	31.20	8.27	327.60	86.8	31		
	Corbel	4.20	1.11	44.10	11.6	i9		
	Breast wall	360.00	95.40	3780.00	1001	.70		
	Footing	336.00	89.04	3528.00	934.	92		
	Soil at heel	57.00	15.11	598.50	158.	60		
	*w – full weight of c	omponent						
					TC			DCCC 10 15 5 4
C	e. Horizontal force	s from live lo	ad surcharg	e pressure	s, LS			•DGCS 10.15.5.4
A live	e load shall be applied	where vehicul	ar load is exp	ected to act	on the	surface	e of the	
backf	fill within a distance eq	ual to the wall	height behind	the back fac	e of the	e wall	·	
	DGCS Table 10.15	.5.4-1						
	Abutment Height (m)	\mathbf{h}_{eq}						
	1.5	1.2						
	3.0	0.9						
	greater than 6.0	0.61	—— Equival	ent height of	soil for	traffic		
	Labut =	10.50 m to	perpen otal length of Ab	outment wall	.11			
	Habut =	12.0 m to	otal height of Ab	outment wall				
								•considering per m-
Horiz	zontal pressure due to live lo	ad surcharge = LS	=	$K_A \Upsilon_{soil} h_{eq}$	=	3.58	kPa	•considering per m-
Live	load surcharge acting on abu	itment = LS* Habu	it * Labut		=	450.46	kN LN	strip
Live	load surcharge acting on bac	wan =LS*nDW*1	Ⅲ ^k (h, ⊥h,)*1m		=	6.94 35 75	kin kN	
Live	Total surenarge acting on DIC	ust wall wall – LO	("bw ' "br / 1111		-	55.15	NI V	
d	I. Horizontal force	s from unifor	m surcharge	e pressures	s, ES			•DGCS 10.15.5.1

Where a un to the basi	niform surcha c earth pressi	urge is pre ure .	sent, a constant l	horizontal	earth pro	essure	shall be	added	•in this example no
This conste	ant earth pres	ssure may	be taken as:	Δ_p	$= k_s q_s$				uniform surcharge is present. However, for
W	nere:								approach the effect of
	$\Delta_p = Const$ $k_s = Coeff$ $q_s = Unife$ wedg	tant horizo ficient of eo frm surcho ge	ontal earth pressi arth pressure du arge applied to th	ure due to e to surch ae upper s	uniform arge or K urface of	surch A the a	arge ctive ear	th	as equivalent earth surcharge
Horizontal	pressure due to li	ive load surc	harge = ES =		K _A δc h _{ap}	=	2.96	kPa	
Live load su	rcharge acting o	on abutment :	= LS* Habut * Labut			=	373.12	kN	•considering per m- strip
Live load su	ircharge acting o	on backwall =	LS*hbw*1m			=	7.40	kN	•considering per m-
Live load su	ircharge acting o	on breast wal	$l wall = ES*(h_{bw}+h_{br})$)*1m		=	29.61	kN	strip
e. H ef Dead load Dead load Live load r Coefficient Dynamic lo	orizontal for fect of bearing reaction force of of wearing surfa- eaction force, L of friction of b bad allowance, I	rce due to ing pad, I f the supersu aces and util L rearing pad, IM	D movement of F R irructure, DC 2 lities, DW μf	superstru 2800.00 k 150.00 k 750.00 k 0.15 n/a	$ \xrightarrow{N} \qquad \qquad$	om v	ia fricti	on	•DGCS 10.17 •Analysis of gravity loads (dead load and liveload) not included. Analysis was carried out separately for gravity loads to determine
	E I d Factor	T (Fact	ored	1	<u> </u>		vertical reactions.
Maximur	n Minimum	load	Unfactored Load	max	min	-			The bearings at abutment are expansion/movable
1	n/a	DC	2800	2800.00	n/a				It will result
1	n/a	DW	150	150.00	n/a				friction
1	n/a	LL	750	750.00	n/a				bearing pad friction
			V =	3700.00					movement or sliding
			$FR = Vx \ \mu_f$	555.00					of superstructure.
STREN	GTH 1	1	I	1		J 7			
Load	Factor, Υ_p	Type of	Unfactored Load	Fact	tored				
Maximur	n Minimum	load		max	min				For the load factors.
1.25	0.9	DC	2800	3500.00	2520.00				refer to:
1.5	0.65	DW	150	225.00	97.50				•DGCS Table 10.3-1
1.75		LL	750	1312.50					•DGCS Table 10.3-2
	I	1	V =	5037.50	2617.50				
			$\mathbf{FR} = \mathbf{Vx} \ \boldsymbol{\mu}_{\mathbf{f}}$	755.63	392.63				
EXTRE	ME EVENT	1				_			
Load	Factor, Υ_p	Type of	Unfactored Load	Fact	tored				
Maximu	n Minimum	load	Cimatorea Doud	max	min				
1.25	0.9	DC	2800	3500.00	2520.00	1			
1.5	0.65	DW	150	225.00	97.50	1			
0.5		LL	750	375.00		1			
			V =	4100.00	2617.50	1			
			$\mathbf{FR} = \mathbf{Vx} \ \boldsymbol{\mu}_{\mathbf{f}}$	615.00	392.63	1			

7.3.3 Load modifiers, factors, and combinations

					Commentary
General lo	ad equa	tion:			•DGCS 10.3
The tota $Q = \sum \eta_i$	al facto γ _i Q _i	red force effect shall be take	en as:		•Factor Yi, refer to DGCS Tables 10.3-1 and 10.3-2
where					
England					
For load					
$\eta_1 = \eta_D \eta_1$					
For load	ls for w	vhich a minimum value of γi	is approp	riate:	
$\eta_i = \frac{1}{\eta_D}$	$\frac{1}{\eta_R \eta_I} \leq 1$.0			
where:					
γi	=	load factor			
η_i	=	load modifier			
$\eta_{\rm D}$	=	a factor relating to ductil	ity		
η_R	=	a factor relating to redun	dancy		
ηι	=	a factor relating to opera	tional imp	ortance	
\mathbf{Q}_{i}	=	force effect			
Load mo • Ductility		.			
For streng	, th limit		•In this exercise, the bridge is classified as		
for non-a	luctile co	omponents and connections	$\eta D \geq $	1.05	typical concrete
for conve	entional d	lesigns complying with AASHTO	$\eta D \; = \;$	1.00	bridge, non-ductile and conventional
for comp	onents a	nd connections	$\eta D \geq $	0.95	level of redundancy
For all ot	ther limit	states	$\eta D \geq$	1.00	

Load Cor

			Commentary
Redundancy			
For strength limit state			
for non-redundant members	$\eta R \ge$	1.05	
for conventional levels of redundancy	$\eta R =$	1.00	
for exceptional level of redundancy	$\eta R \geq$	0.95	
For all other limit states	$\eta R \geq $	1.00	
Operational Importance			
For strength limit state			
for critical and essential bridges	$\eta I \geq$	1.05	
for typical bridges	$\eta I =$	1.00	
for relatively less important bridges	$\eta I \geq$	0.95	
For all other limit states	$\eta I \geq$	1.00	
Load factors:			•DGCS Table 10.3-1
Table 10.3-1 Load Combination and Load Factors			
nbination DC DD DU Use one of these at a time UW UL EH IM EH IM DU UV UL UV			

Limit State	EH EV ES EL PS CR SH	IM CE BR PL LS	WA	ws	FR		TG	SE	EQ	BL	СТ	cv	Table 10.3-2 Load Factors for Permanent Loads,	Vp.		•The applicable basic load combinations for
STRENGTH-I (Unless noted)	Yn	1.75	1.00		1.00	0.50/1.20	0.0	Yor					Time of Lond	Load	Factor	this exercise are
STRENGTH-II	Yo	1.35	1.00		1.00	0.50/1.20	0.0	Yse					Type of Load	Max	Min	Event I and Service
STRENGTH-III	Yp	1.35	1.00		1.00	0.50/1.20	0.0	γse					DC: Component and Attachments	125	0.90	I.
STRENGTH-III	γρ	-	1.00	1.4	1.00	0.50/1.20	0.0	Yse		-	-	-	D: Doundrog	1.00	0.45	
STRENGTH-IV	γp		1.00		1.00	0.50/1.20					-	-		1.00	0.45	
EH, EV, ES, DW,	1.5												DW: Wearing Surfaces and Utilities	1.50	0.65	
DC ONLY													EH: Horizontal Earth Pressure			
STRENGTH-V	γρ	1.35	1.00	0.40	1.00	0.50/1.20	0.0	Yse				-	Active	1.50	0.90	
EXTREME EVENT - I	γp	γεο	1.00	-	1.00				1.00				At-Rest	1.35	0.90	
EVENT - I													EL: Locked-in Erection Stresses	1.00	1.00	
EXTREME EVENT - II	Υp	0.5	1.00	-	1.00	-	•	•	•	1.00	1.00	1.0 0	EV: Vertical Earth Pressure			
EVENT - II													Retaining Walls and Abutments	1.35	1.00	
SERVICE - I	1.00	1.00	1.00	0.30	1.00	1.00/1.20	0.0	γse			-	-	Rigid Buried Structure	1.30	0.90	
SERVICE - II	1.00	1.3	1.00	-	1.00	1.00/1.20		-	•			-	Rigid Frames	1.35	0.90	
SERVICE - III	1.00	0.8	1.00	-	1.00	1.00/1.20	0.0	γse	•	•	-	-	Elevible Buried Structures other than Metal Box Culverts	1.05	0.00	
SERVICE - IV	1.00	•	1.00	0.70	1.00	1.00/1.20	•	1.0	•	•	-	-	The state of the s	1.55	0.50	
FATIGUE - 1 LL, IM, & CE ONLY	-	1.50	•	-	•	•	•	•	•	•	-	-	Flexible Metal Box Culverts	1.50	0.90	
FATIGUE - II LL, IM, & CE ONLY	-	0.75	-	-		-	-	-	-	•	-	-	ES: Earth Surcharge	1.50	0.75	

7.4 DESIGN OF BACKWALL

7.4.1 Determine the applicable loads calculated from section 7.3 Geometry and Load Calculations

				Commentary
1. P	Permanent loads			 loads per meter strip
Ι	Dead load from the superstructure, DC 1	N/A		
Ι	Dead load from self weight, DC 2			
a) Weight of backwall, DC 2.1	31.20	kN	
b) Weight of corbel, DC 2.2	4.20	kN	
С) Weight of approach slab, DC 2.3	38.40	kN	
Ι	Deadload of future wearing surface and utilities. DW	N/A		• Future wearing
H	Horizontal earth pressure load, EH $(=P_A)$	18.32	kN	surface is considered
E	Earth surcharge load, ES	7.40	kN	approach slab.
2.	Braking force, BF	10.48	kN	However in actual practice, wearing surface maybe
3.	Earthquake force, EQ			applied immediately
	Seismic active earth force, P_{AE}	31.64	kN	in the approch slab.
	Seismic inertial force, P_{IR}			
	a) kh * Backwall	8.27	kN	
	b) kh *Corbe	1.11	kN	
	c) kh * Approach slab	10.18	kN	
	d) kh * Soil	37.76	kN	
		0,11,0		
4.	Vehicular live load	N/A		
5.	Live load surcharge, LS	8.94	kN	
6.	Friction load, FR	N/A		
7.	Water load and stream pressure, WA	N/A		Vehicular live load
	-			not applicable, however the effect of
				LL surcharge and BF
				are applied.

7.4.2 Determine the load combinations with applied load modifiers and load factors

<u>a. Loa</u>	ad Con	<u>ıbinati</u>	on: ST	'RENG	<u>TH 1</u>	Load r Load r	nodifier f nodifier f	•Modifier, ηi $\eta_D \ge 1.05$ $\eta_R \ge 1.00$ $\eta_i \ge 1.00$ for max. values $p_i = 1/(1.05 \times 1.0)$				
Lord	Faator		Unfactore	d load, kN	Louor			Facto	ored			$n_{i} = 1.05$
LUau I	min	Load Type	Load Type Hor'l Vert'l		arm	Axial fo	orce, kN	Shear fo	orce, kN	Momen	t, kN-m	for min. values $\eta_i = 1/(1.05 \times 1.0 \times 1.0)$
max	111111				(111)	max	min	max	min	max	min	$\eta_{i=}0.95$
1.25	0.90	DC 2.1	0	31.20	0.0	39.00	28.08	0	0	0	0	
1.25	0.90	DC 2.2	0	4.20	-0.40	5.25	3.78	0	0	-2.10	-1.51	
1.25	0.90	DC 2.3	0	38.40	-0.40	48.00	34.56	0	0	-19.20	-13.82	
1.50	0.90	EH	18.32	0	0.83	0	0	27.47	16.48	22.80	13.68	
1.50	0.75	ES	7.40	0	1.25	0	0	11.10	5.55	13.88	6.94	
1.75		BF	10.48	0	2.50	0	0	18.33	0	45.83	0	
1.75		LS	8.94	0	1.25	0	0	15.64	0	19.55	0	
(Strength I) Design load: 96.86 63.10 76.18 20.93 84.81 5.02												

b. Los		Commentary											
Not	te: The	e latera	l force	to be	applie	d to th	he wall	due to	o seism	ic and	earth	•DGCS 16.2.6	
pre	ssure l	oading	should	be dete	ermined	l consid	dering t	he com	bined e	effects of	of PAE		
ana ·		conside	ering a	nd the	m not	to be	concur	rent. T	wo cas	ses sho	oud be		
inv	estigat	ed :											
• (CASE	1. Com	hined	100% ი	f PAR n	lus 509	6 of Pm						
•	CASE	2. Com	bined '	50% of	$\mathbf{P}_{\mathbf{A}\mathbf{E}}$	t no les	s than	static a	ctive e	orth nre	ssure		
	with 1	2. Com 00% of	P _{IP} .	5070 01	IAEUU	1 110 10.	55 than	static a		u un pro	.55 u ic		
Tł	The most conservative result of the two cases shall be used in the design of the												
ba	M. I.f.												
		• would be η_i											
b1. <u>Lo</u>	$I_{1} = 1.00$												
Load I	Factor	Load			Lever	1.0	1.5.7				. 137	1	
	min	Туре	Hor'l	Vert'l	(m)	Axial fo	orce, kN	Shear f	orce, kN	Mome	nt, kN-m		
max	111111				(111)	max	min	max	min	max	min		
1.25	0.90	DC 2.1	0	31.20	0.0	39.00	28.08	0	0	0	0		
1.25	0.90	DC 2.2	0	4.20	-0.40	5.25	3.78	0	0	-2.10	-1.51		
1.25	0.90	ES	7.40	38.40	-0.40	48.00	0 0	11.10	5 55	-19.20	-13.82	8	
0.50	0.75	BF	10.48	0	2.50	0	0	5.24	0	13.10	0.24		
0.50		LS	8.94	0	1.25	0	0	4.47	0	5.59	0	ĺ	
1.00		50%P _{IR} a	4.13	0	1.25	0	0	4.13	0	5.17	0]	
1.00		50%P _{IR} b	0.56	0	1.85	0	0	0.56	0	1.03	0		
1.00		50%P _{IR} _c	5.09	0	2.30	0	0	5.09	0	11.70	0		
1.00		50%P _{IR} _d	18.88	0	1.25	0	0	18.88	0	23.60	0		
1.00		P _{AE}	31.64	0	0.83	0	0	31.64	0	26.26	0		
	(F	vtreme Fa	vent 1.Ca	se1) Des	ion load:	92.25	66 42	81 12	5 55	79.03	-8 40		
	(12	Atreme E			1511 10 uu .	72.20	00.12	01.12	0.00	17:00	0,40	Madifian n	
b2. <u>Lo</u>	oad Con	<u>nbinatio</u>	n: EXT	REME	EVENI	T (CAS	<u>SE 2) (C</u>	ase2: 50	<u>% Рде</u>	+ 100%	<u>, P_{IR})</u>	•Modifier, η_i	
					Howeve	er, if 50	% P _{AE} <	P _A , use	e P _A , els	e use 5	$0\%P_{AE}$	II1 = 1.00	
					Verific a	tion:							
					50% PA	.е =	:	15.82					
					$P_A = EE$	[=	:	18.32 >	50% P	AE			
							the	refore u	se EH				
Load	Factor		Unfactore	ed load, kN	Lever			Facto	ored				
2000		Load	Hard	Mant'l	arm	Axial fo	rce, kN	Shear fo	rce, kN	Moment	, kN-m		
max	min	Type	HOFI	verti	(m)	max	min	max	min	max	min		
1.25	0.90	DC 2.1	0	31.20	0	39.00	28.08	0	0	0	0		
1.25	0.90	DC 2.2	0	4.20	-0.40	5.25	3.78	0	0	-2.10	-1.51		
1.25	0.90	DC 2.3	0	38.40	-0.40	48.00	34.56	0	0	-19.20	-13.82		
1.50	0.75	ES	7.40	0	1.25	0	0	11.10	5.55	13.88	6.94		
0.50		BF	10.48	0	2.50	0	0	5.24	0	13.10	0		
0.50		LS Pm a	8.94 8.27	0	1.25	0	0	4.47	0	5.59	0		
1.00		P_{IR} b	1.11	0	1.25	0	0	1.11	0	2.06	0		
1.00		P _{IR} _c	10.18	0	2.30	0	0	10.18	0	23.40	0		
1.00		P _{IR} _d	37.76	0	1.25	0	0	37.76	0	47.20	0		
1.00		EH	18.32	0	0.83	0	0	18.32	0	15.20	0		
	(E	ALTEINE EN	ent I-Ca	se 2) Des	ign 10ad:	92.23	00.42	90.45	3.33	109.47	-0.40		

													Con	nmenta	ary
	<u>c</u> .	Loa	d Com	binatio	on : SE	RVIC	<u>E 1</u>						•Modi	fier, η _i	
													$\eta_{i=}$		1.00
I	Load	Factor	T 1	Unfactore	d load, kN	Lever			Facto	ored					
-	Load		Load	Hor'l	Vort'l	arm	Axial fo	orce, kN	Shear fo	orce, kN	Momen	t, kN-m			
	max	min	Type		verti	(m)	max	min	max	min	max	min			
	1.00		DC 2.1	0	31.20	0.0	31.20	0	0	0	0	0			
	1.00		DC 2.2	0	4.20	-0.40	4.20	0	0	0	-1.68	0			
	1.00		DC 2.3	0	38.40	-0.40	38.40	0	0	0	-15.36	0			
	1.00		EH	18.32	0	0.83	0	0	18.32	0	15.20	0			
	1.00		ES	7.40	0	1.25	0	0	7.40	0	9.25	0			
	1.00		BF	10.48	0	2.50	0	0	10.48	0	26.19	0			
	1.00		LS	8.94	0	1.25	0	0	8.94	0	11.17	0			
				(Servi	ce 1) Des	ign load:	73.80	0.00	45.13	0.00	44.78	0			
	b3. <u>Summary of Load Combinations:</u>														
			SIKE	GIHI				EXIK							
	Axial fo	rce (kN)	Shear Fo	orce (kN)	Moment	t (kN-m)	Axial fo	Axial force (kN) Shear Force (kN) Moment (k							
	max	min	max	min	max	min	max	min	max	min	max	min			
	96.86	63.10	76.18	20.93	84.81	5.02	92.25	66.42	81.12	5.55	79.03	-8.40			
		EXTR	REME EVI	ENT 1 (CA	ASE 2)				SERV	ICE 1					
	Axial fo	Axial force (kN) Shear Force (kN) Moment (kN-m)		t (kN-m)	Axial fo	rce (kN)	Shear Fo	rce (kN)	Moment	(kN-m)					
	max	min	max	min	max	min	max	min	max	min	max	min			
92.25 66.42 96.45 5.55 109.47 -8.40 73.80 0.00 45.13									0.00	44.78	0.00				

7.4.3 Determine the governing design forces:

7.4.4 Verification of flexural resistance

						Commentary
Demand moment, Md	240.	00 kN	-m			
Concrete cover	- 15	mn	n	Ab-	100.97	
Diameter of shrinkage bar	16	mn	ll n	A0=	490.07	
Diameter of sin inkage bar	10	mn	n			
Effective depth of concrete, de	404.	5 mn	n			• per 1m-width
Width to be considered, b	100	0 mn	n			design
Overall thickness of component, h Minimum reinforcement	520) mn	n			• DGCS 12.4.3.3
Flexural cracking variability factor, γ_1	1.	6 *f	for all c	other concr	ete	
Ratio of specified min. to ult. tensile strength of steel, γ_3	0.0	57 *f	for A61	5, 414MP	a steel	
Modulus of rupture, f_r	3.3	34 M	IPa			
Section modulus, S_c	4.5E	+07 m	m ³			
Cracking moment, M_{cr}						
$M_{cr} = \gamma_3 (\gamma_1 \cdot f_r) S_c$	161	.05 kN	N-m			
Mu_min 1.33*Md =	319	.20 kľ	N-m			
Condition: if Md > (min (Mcr, Mu_min), Md, (min (Mcr, M	(lu_min))					
Therefore, Design moment for backwall, Md	240	.00 kľ	N-m	Governs!	!!	
Steel ratio						
						• DGCS 12.4.2.1
$\beta_{l} = \text{Coefficient Criterion:}$	= 0.85					
the factor β_1 , shall be taken as 0.85 for concrete strengths not	0.00					
arcanding 28MPa For concrete strength exceeding 28MPa						
β shall be reduced at a rate of 0.05 for each 7MPa strength						
p_1 shall be reduced at a rate of 0.05 for each 7MF a strength						
excess of 28MPa but not less than 0.05						
For required steel ratio o	$m_1 = -0.057^{\circ}$	3				
Tor required scorrado, p	m 0.001	2	2			
	$m_2 = 0.084$	mm	/N			
	$R_n = 1.630$	MPa	l			
	$\rho = 0.004$	1				
Computation for main reinforcement						
Required steel area. As	1647 0	2 mm ²	2			
Required spacing, s	298.04	- min sa	v:	250	mm	
Provided steel for backwall, As	1963.4	9 mm ²	2			
Compression fiber to neutral axis, c	40.28	mm				
Depth of compression block. a	34.24	mm				
Nominal moment capacity of section. M_{-}	315.66	6 kN-r	n			
Resistance factor Ø	0.0	tenci	ion is co	ontrolled		
$0.75 \le \phi = 0.65 + 0.15 (d_{sec}c - 1) < 0.9$ 2.01	0.7	01151	511 15 00			
$\frac{1}{2.01}$	284 00) -N +	n 0	KI		
onumate moment capacity of section, φ_{IM_n}	204.UX	V KIN-I	ш U 110	17.		
Uning of 15mm dim in here and at 250 m O.C. C. L. L			1.18			
Using of 25mm Ø main bars spaced at 250mm U.C. for backwa	u is adequate					

		Commentary
Control of cracking by distribution of reinforcement		• DGCS 12.4.3.4
Applies to all reinforcements of concrete that exceeds 80% of the modulus of	of rupture, except deck slabs.	
Moment demand at Service 1	44.78 kN-m	• DGCS 12.1.1.6
80% of Modulus of rupture, f_r 80% x 0.52 v f'c	2.201 MPa	
Tensile stress in steel at the service limit, f_{ss} M_s/S_c =	0.994 MPa	
Tensile stress in steel does not exceed 80% of the modulus of rupture, this pro satisfied	ovision does not need to be	
Extreme tension fiber to center of flexural reinforcement, d_c	rmed f'c s s - mm	• This section is N/A because 80% fr > fsc
Overall thickness of component, <i>h</i>	- mm	because 80% fr > fss limit.
Compression fiber to the centroid of extreme tension steel, d_e Neutral axis to extreme compression fiber x	- mm	
Modulus elasticity of steel F	- GPa	
Modulus elasticity of concrete, E_s	- GPa	
Modular ratio, <i>n</i>	-	
Cracked section moment of inertia of section, I_{NA}	- mm ⁴	
Exposure factor, Υ_e	-	
Exposure condition: <u>Class 1</u>		
Tensile stress in steel reinforcement at the service limit, f_s	- mPa	
$\beta s = 1 + d_c / (0.7 (h - dc))$	-	
The spacing shall satisfy: $s \leq 123000\gamma_{e}/\beta_s f_{ss} - 2dc$		
Initial spacing: - mm		

7.4.5 Verification of shear resistance

	387.38 mm	• DGCS 12.5.3.2
=0.9 * de	364.05 mm	
=0.72 * h	374.4 mm	
	=0.9 * de =0.72 * h	387.38 mm =0.9 * de 364.05 mm =0.72 * h 374.4 mm

Factor indicating ability of diagonally cracked concrete to transmit tension	2.63	= ß		Commentary
Solution for B: GENERAL PROCEDURE	2.05	P		
Area of prestressing steel on tension side, $A_{\rm pr}$	0	mm ²		• General procedure is basically applicable to
Area of non-prestressing steel A	1963 49	mm ²		design of walls, slab
Maximum accreate size a	20	mm		thickness > 400mm
Maximum aggregate size, a_g	20			
Modulus of elasticity of prestressing tendons, f_{po}	0	MPa		• DGCS 12.5.3.3.2
Factored axial force, N_u	-92250	Ν		
*Positive for tension; Negative for compression				
Factored shear force, V_u	00000.00	N		
Absolute value of the factored moment, M_u	2.4E+08	N-mi	n	
*But not less than $ V_u - V_p d_v$				
Modulus of elasticity of prestressing steel, E_p	0	GPa		
Modulus of elasticity of steel, E_s	200	GPa		
Net longitudinal tensile strain, e_s	0.001			
Crack spacing parameter, S_{xe}	360	mm		
Shear resistance from steel, V_s	0	kN		
Effective prestressing force, V_p	0	kN		
Shear resistance provided by concrete, V_c	447.59	kN		
The nominal shear resistance, V_n	447.59	kN		
*shall be determined as the lesser of:				
$V_n = Vc + Vs + Vp$	447.59	kN		
$V_n = 0.25 f c^{\prime} b_v d_v + V p$	2711.67	kN		
Vu = Vd =	400.00	kN		
Resistance factor for normal weight concrete, ϕ	0.9			
Ultimate shear capacity of section, ∂V_n	402.83	kN	OK!	
	c/d =	1	1.01	
Section without shear reinforcement is adequate				

7.4.6 Verification of interface shear resistance

 Interface shear transfer shall be considered across a given plane at: a) An existing or potential crack b) An interface between dessimilar materials c) An interface between two concrete cast at different times d) The interface between different elements of the cross-section 		•DGCS 12.5.5
Number of bars provided (for both faces per meter strip), Nsay8pcsArea of shear reinforcement crossing the shear plane, A_{vf} 3926.99 mm²*Minimum area of shear interface shall satisfy:		•N= (b/s) x 2sides •DGCS 12.5.5.3
$A_{vf} \ge (0.35 A_{cv}) / f_y$ 242.89 mm ²	SATISFIED!	
Interface length considered to be engaged inshear transfer, L_{vi} 1000 mm		
Interface width considered to be engaged inshear transfer, b_{vi} 288 mm		
Area of concrete considered to be engaged in interface shear transfer, A_{cv} 288000 mm ²		
Permanent net compressive force normal to the shear plan, P_c 92250 N		
Factored interface shear force due to total load, V_{ui} 400.00 kN		

			Commentary						
Cohesion and friction factors	with surf	ace intentionally	DCCC 10 5 5 0						
roughened to an amplitude of 6mm:	"Jor concrete placed against a clean concrete surface, free of tailance, with surface intentionally roughened to an amplitude of 6mm:								
Cohesion factor, c	1.7	MPa							
Friction factor, m	1.00								
Fraction of concrete to resist interface shear, K_1	0.25								
Limiting interface shear resistance, K_2	10.3	MPa							
The nominal shear resistance of the interface plane shall be taken as:									
$V_{ni} = cAcv + \mu(Avffy + Pc)$	2211.55	kN							
The nominal shear resistance, V_{ni} shall not be greater than the lesser	of:								
a) $K_1 f^{\prime} c A_c$	2016	kN							
b) $K_2 A_{cv}$	2966.40	kN							
Nominal shear resistance of the interface plane, V_{ni}	2016	kN							
Resistance factor for normal weight concrete, ϕ	0.9								
Factored interface shear resistance of the section, V_{ri}	1814.40	kN OK!							
Section is adequate at interface shear transfer									

7.4.7 Verification of shrinkage and temperature reinforcement

Reinforcement for shrinkage and temperature stresses sha daily temperaturechanges and in structural mass concrete Diameter of shrinkage and temperature bar	•DGCS 12.7.8		
Assumed spacing, S	200	mm	
Assumed shrinkage and temperature reinforcement, As	1.00531	mm ² /mm	
Shrinkage and temperature reinforcement shall satisfy:			
a) $As \ge (0.75 bh)/(2 (b+h)f_y)$ 0.389	1.01	mm ² /mm	
<i>b</i>) $0.233 \le As \le 1.27$	1.00531	mm ² /mm	
Spacing shall not exceed:			
a) 3.0 times the component thickness, or 450 mm			
b) 300 mm for walls and footings greater than 450 m	m thick		
c) 300 mm for other components greather than 900 m	ım thick		
Final shrinkage and temperature reinforcement A.	1005 31	mm ² per meter	
Final spacing to be used	200	mm	
I mai spacing to be used	200 any: 200	mm	
Use 16mm for townships and shrinkase has spaced	Say. 200		
Ose 10mm for temperature and shrinkage our spaced	ai 200mm O.C. eachjace		

7.4.8 Development of reinforcement

					Commentary
Diameter of main bars, d_b			25	mm	•DGCS 12.8.2.1
Area of main bars, A_b			490.87	mm ²	
Basic tension development length, l_{db}			769.96	mm	
Minimum development length (only for d_b 36 mm and lesse	r)		622.50	mm	
Modification Factor.					
Modification factor 1	0.8				
Modification factor 2	0.839				
Final development length, l_d	622.50	say:	700	mm	

7.4.9 Backwall details

7.5 DESIGN OF BREAST WALL

7.5.1 Determine the applicable loads calculated from section 7.3 Geometry and Load Calculations

	Chicklin			
1	Permanent loads			 loads per meter strip
	Dead load reaction force of the superstructure, DC 1	266.67	kN	
	Dead load from self-weight, DC 2			
	a) Weight of backwall, DC 2.1	31.20	kN	
	b) Weight of corbel, DC 2.2	4.20	kN	
	c) Weight of breast wall, DC 2.3	360.00	kN	
	d) Weight of approach slab, DC 2.4	38.40	kN	
	Deadload of wearing surfaces and utilities, DW	14.29	kN	
	Horizontal earth pressure load, EH $(=P_A)$	293.04	kN	
	Earth surcharge load, ES	29.61	kN	
2	Braking force, BF	10.48	kN	•DE is the breeking
				from approach slab.
3	Earthquake force, EQ			BF from
	Seismic active earth force, P_{AE}	506.31	kN	superstructure is N/A.

Seismic inertial force, P _{IR}			Commentary
a) kh * Backwall	8.27	kN	• Note: FR loads are
b) kh *Corbel	1.11	kN	alfeauy factoreu.
c) kh * Breast wall	95.40	kN	
d) kh * Approach slab	10.18	kN	
e) kh * Soil	151.05	kN	
4. Vehicular live load	71.43	kN	
5. Live load surcharge, LS	35.75	kN	
6. Friction load, FR			
a) Strength 1			
- at maximum condition	71.96	kN	
- at minimum condition	37.39	kN	
b) Extreme event 1			
- at maximum condition	58.57	kN	
- at maximum condition	37.39	kN	
c) Service 1			
- at maximum condition	52.86	kN	
- at maximum condition	0	kN	
7. Water load and stream pressure, WA	N/A	kN	

7.5.2 Determine the load combinations with applied load modifiers and load factors.

<u>a. Lo</u>	Load modifier for maximum values, η_i 1.05Load modifier for minimum values, η_i 0.95a. Load Combination: STRENGTH 1									 Application of modifiers are similar to backwall. Modifier, ηi η_D ≥ 1.05 n_R > 1.00 		
	Unfortened lead kN Factored										$\eta_i \geq 1.00$	
Load	Factor	Load Type	Hor'l	Vert'l	Lever arm (m)	Axial force, kN Shear force, kN Moment, kN-m				for max. values $\eta_i = 1/(1.05 \times 1.0 \times 1.0)$		
mux					()	max	min	max	min	max	min	for min values
1.25	0.90	DC 1	0.00	266.67	0.30	333.33	240.00	0.00	0.00	100.00	72.00	$n_{i} = 1/(1.05 \times 1.0 \times 1.0)$
1.25	0.90	DC 2.1	0.00	31.20	-0.74	39.00	28.08	0.00	0.00	-28.86	-20.78	$n_1 = 0.95$
1.25	0.90	DC 2.2	0.00	4.20	-1.18	5.25	3.78	0.00	0.00	-6.20	-4.46	$1_{11} = 0.00$
1.25	0.90	DC 2.3	0.00	360.00	0.00	450.00	324.00	0.00	0.00	0.00	0.00	
1.25	0.90	DC 2.4	0.00	38.40	-1.18	48.00	34.56	0.00	0.00	-56.64	-40.78	
1.50	0.65	DW	0.00	14.29	0.30	21.43	9.29	0.00	0.00	6.43	2.79	
1.50	0.90	EH	293.04	0.00	3.33	0.00	0.00	439.56	263.74	1463.75	878.25	Neter Estation former
1.50	0.75	ES	29.61	0.00	5.00	0.00	0.00	44.42	22.21	222.10	111.05	•Note: Friction forces
		FR	0.00	0.00	7.50	0.00	0.00	71.96	37.39	0.00	280.45	section Geometry and
1.75		LL	0.00	71.43	0.30	125.00	0.00	0.00	0.00	37.50	0.00	Load
1.75		BF	10.48	0.00	10.00	0.00	0.00	18.33	0.00	183.33	0.00	
1.75		LS	35.75	0.00	5.00	0.00	0.00	62.56	0.00	312.82	0.00	
	(Strength I) Design load: 1073.11 607.72 668.69 307.17 2345.94 1214.58									ļ		
<u>b. Loa</u> <u>b.1 Lo</u>	<u>b. Load Combination: EXTREME EVENT I</u> b.1 Load Combination: EXTREME EVENT I (CASE 1) (Case1: 100% P _{AE} + 50% P _{IR)}											
												Commentary
---------	--------	----------------------------------	-----------------------	------------	---------------------	---------------	-------------------------------------	----------------	------------------	----------------	--------------	---
Load	Factor		Unfactore	d load, kN	Lever			Facto	ored			 Modifier, η_i
Loud	luctor	Load Type	Hor'l	Vort'l	arm	Axial fo	rce, kN	Shear fo	rce, kN	Moment	t, kN-m	$\eta_{i} = 1.00$
max	min	турс	1101 1	Volt1	(m)	may	min	max	min	max	min	
1.25	0.90	DC 1	0.00	266 67	0.30	333 33	240.00	0.00	0.00	100.00	72.00	
1.25	0.90	DC 2.1	0.00	31.20	-0.74	39.00	28.08	0.00	0.00	-28.86	-20.78	
1.25	0.90	DC 2.2	0.00	4.20	-1.18	5.25	3.78	0.00	0.00	-6.20	-4.46	
1.25	0.90	DC 2.3	0.00	360.00	0.00	450.00	324.00	0.00	0.00	0.00	0.00	
1.25	0.90	DC 2.4	0.00	38.40	-1.18	48.00	34.56	0.00	0.00	-56.64	-40.78	
1.50	0.65	DW	0.00	14.29	0.30	21.43	9.29	0.00	0.00	6.43	2.79	
1.50	0.75	ES	29.61	0.00	5.00	0.00	0.00	44.42	22.21	222.10	111.05	
0.50		LL	0.00	71.43	0.30	35.71	0.00	0.00	0.00	10.71	0.00	
0.50		BF	10.48	0.00	10.00	0.00	0.00	5.24	0.00	52.38	0.00	
0.50		LS	35.75	0.00	5.00	0.00	0.00	17.88	0.00	89.38	0.00	
		FR	0.00	0.00	7.50	0.00	0.00	58.57	37.39	439.29	280.45	Note: Friction forces
1.00		PAR	506.31	0.00	3,33	0.00	0.00	506.31	0.00	1686.01	0.00	are already factored on
1.00		50% Pm a	4 13	0.00	8 75	0.00	0.00	4 13	0.00	36.17	0.00	section Geometry and
1.00		$50\% P_{\rm m}$ h	0.56	0.00	9.40	0.00	0.00	0.56	0.00	5.23	0.00	Load
1.00		50% P	47.70	0.00	3.75	0.00	0.00	47.70	0.00	178.88	0.00	
1.00		50% P _{IR} _C	47.70	0.00	0.92	0.00	0.00	47.70 5.00	0.00	50.02	0.00	
1.00		$\frac{50\% P_{IR}_{0}}{50\% P}$	3.09	0.00	9.85	0.00	0.00	5.09	0.00	30.02	0.00	
1.00		50% P _{IR} _e	/5.55	0.00	5.00	0.00	0.00	/5.53	0.00	377.63	0.00	
	(1			1) D.	! l l.	022 72	(20.71	7(5.42	50 (0	21(2.51	400.20	
	(E	Atreme E	vent I-Ca	asel) Des	ign ioad:	952.75	039./1	/05.42	59.00	5102.51	400.20	
h 2 I a	ad Con	hinatio	n• FYT	REME	FVFNT	TICAS	F 2) (C	2502.500	0% D 4E J	100%	Pm)	
0.2 LU		101114110	II. 12/X I	KENIE		1 (CAS		D	<u>70 I де</u> ¬	<u> </u>	<u>, ik/</u>	
					Verific	er, II 505	$^{\prime\prime}$ P _{AE} <	P_A , use F	A_A , else t	1se 50%1	AE	
					50% D	- auton.	24	3 15				
					D -FF	ае — J —	2.	3.13	0% D			
					I A -LI	1 -	there	fore use	FH			
Load	Factor		Unfactore	d load, kN	Lovor		there	Factor	ored			
Load	Factor	Load	11	Manth	arm	Axial fo	rce, kN	Shear fo	rce, kN	Moment	t, kN-m	•Modifier, η _i
max	min	1 ype	HOI I	verti	(m)	max	min	max	min	max	min	$\eta_i = 1.00$
1.25	0.90	DC 1	0.00	266.67	0.30	333.33	240.00	0.00	0.00	100.00	72.00	
1.25	0.90	DC 2.1 DC 2.2	0.00	4.20	-0.74	39.00 5.25	28.08 3.78	0.00	0.00	-28.86	-20.78	
1.25	0.90	DC 2.3	0.00	360.00	0.00	450.00	324.00	0.00	0.00	0.00	0.00	
1.25	0.90	DC 2.4	0.00	38.40	-1.18	48.00	34.56 9.29	0.00	0.00	-56.64 6.43	-40.78	
1.50	0.75	ES	29.61	0.00	5.00	0.00	0.00	44.42	22.21	222.10	111.05	
0.50		LL BE	0.00	71.43	0.30	35.71	0.00	0.00	0.00	10.71	0.00	
0.50		LS	35.75	0.00	5.00	0.00	0.00	17.88	0.00	89.38	0.00	
1.00		FR	0.00	0.00	7.50	0.00	0.00	58.57	37.39	439.29	280.45	
1.00	ļ	P _{IR} _a	293.04 8.27	0.00	<u>3.33</u> 8.75	0.00	0.00	293.04 8.27	0.00	72.35	0.00	Neter Estat
1.00		P _{IR} _b	1.11	0.00	9.40	0.00	0.00	1.11	0.00	10.46	0.00	•Note: Friction forces are already factored on
1.00		P _{IR} _c	95.40	0.00	3.75	0.00	0.00	95.40	0.00	357.75	0.00	section Geometry and
1.00		P _{IR} _e	151.05	0.00	5.00	0.00	0.00	151.05	0.00	755.25	0.00	Load
		-										
		. –				0.4.5					10	

. T .			4 C	EDVI	NE 1							Commentary
с. <u>L(</u>	bad Co	mdina	<u>tion: 5</u>	EKVI	<u>_E I</u>							
Lord	Unfactored load, kN Lever Factored											
Luau	Factor	Load			arm	Axial fo	orce kN	Shear fo	rce kN	Momen	kN-m	•Modifier, η_i
max	min	Туре	Hor'l	Vert'l	(m)	7 Fridi 10	лее, кі (blicul 10	iee, ki (momen	, KI (III	$\eta_{i} = 1.00$
1.00			0.00	266.67	0.20	max	min	max	min	max	min	
1.00		DC 1	0.00	200.07	0.30	200.07	0.00	0.00	0.00	80.00	0.00	
1.00		DC 2.1	0.00	31.20 4.20	-0.74	31.20 4.20	0.00	0.00	0.00	-25.09	0.00	
1.00		DC 2.2	0.00	360.00	-1.10	4.20	0.00	0.00	0.00	-4.90	0.00	
1.00		DC 2.3	0.00	38.40	-1.18	38.40	0.00	0.00	0.00	-45.31	0.00	
1.00		DC 2.4	0.00	14 29	0.30	14 29	0.00	0.00	0.00	4 29	0.00	
1.00		EH	293.04	0.00	3.33	0.00	0.00	293.04	0.00	975.83	0.00	
1.00		ES	29.61	0.00	5.00	0.00	0.00	29.61	0.00	148.06	0.00	
1.00		FR	0.00	0.00	7.50	0.00	0.00	52.86	0.00	396.43	0.00	
1.00		LL	0.00	71.43	0.30	71.43	0.00	0.00	0.00	21.43	0.00	
1.00		LS	35.75	0.00	5.00	0.00	0.00	35.75	0.00	178.76	0.00	
1.00		BF	10.48	0.00	10.00	0.00	0.00	10.48	0.00	104.76	0.00	
			(Serv	ice 1) Des	sign load:	786.18	0.00	421.74	0.00	1836.20	0.00	
Summor	w of I og	d Combin	ations									
Summar	y of Load		atio <u>lis.</u>									
		STRE	NGTH I				EXT	REME EVE	NT 1 (CA	SE 1)		
Axial for	rce (kN)	Shear Fo	orce (kN)	Moment	t (kN-m)	Axial fo	rce (kN)	Shear For	rce (kN)	Moment	(kN-m)	
max	min	max	min	max	min	max	min	max	min	max	min	
1073.11	607.72	668.69	307.17	2345.94	1214.58	932.73	639.71	765.42	59.60	3162.51	400.26	
	EXTREME EVENT 1 (CASE 2) SERVICE 1											
Axial for	Axial force (kN) Shear Force (kN) Moment (kN-m)			Axial force (kN) Shear Force (kN) Moment (kN-m)			(kN-m)					
max	min	max	min	max	min	max	min	max	min	max	min	
932.73	639.71	685.15	59.60	3100.26	400.26	786.18	0.00	421.74	0.00	1836.20	0.00	

7.2.3 Determine the governing design forces:

Load Combination: EXTREME EVENT I (CASE 1)	• The summary of load combinations
Axial force = 932.73 kN Shear Force = 765.42 kN Moment = 3162.51 kN-m	Extreme Event 1 (Case 1) is the critical load case.

7.5.4 Verification of flexural resistance

		Commentary
Demand moment	3162.51 kN-m	
Concrete cover	75 mm	
Diameter of reinforcing bar	36 mm Ab = 1017.88	
Diameter of shrinkage bar	<mark>16 m</mark> m	
Diameter of cross ties	12 mm	
Effective depth of concrete, de	1879 mm	
Width to be considered, b	1000 mm	• per 1m-width design
Overall thickness of component, h	2000 mm	
Minimum reinforcement		• DGCS 12.4.3.3
Flexural cracking variability factor Y1	1.6 *for all other concrete	
Patio of specified min to ult tensile strength of steel X3	0.67 *for $A615$ /1/MPa steel	
Madulus of spectrum f	2.224 mBs	
Modulus of rupture, <i>J</i> _r	5.554 mPa	
Section modulus, S_c	$6.7E+08 \text{ mm}^{3}$	
Cracking moment, <i>M</i> _{cr}		
$M_{cr} = \gamma_3(\gamma_1 \cdot fr) Sc$	2382.45 kN-m	
$Mu_min 1.33*Md =$	4206.14 kN-m	
Condition: if Md > (min (Mcr, Mu_min), Md, (min (Mcr, Mu	ı_min))	
Design moment for breast wall	3162.51 kN-m Governs!!!	
<u>Steel ratio</u>		• DGCS 12.4.2.1
B. Coefficient Criterion	- 0.85	
p_1 coefficient effection. the factor β_1 shall be taken as 0.85 for concrete strengths not	_ 0.05	
exceeding 28MPa For concrete strength exceeding 28MPa		
β_1 , shall be reduced at a rate of 0.05 for each 7MPa strength		
pr shall be reduced at a rate of 0.05 for each right a strength excess of 28MPa but not less than 0.65		
excess of 20111 a but not ress than 0.00		
For required steel ratio, p	$m_1 = -0.0573$	
. I	$m_{\rm c} = 0.084 \ \text{mm}^2/\text{N}$	
	$\mathbf{M}_2 = 0.005 \text{MB}_2$	
	$R_n = 0.995$ MPa	
	p = 0.0025	
Computation for main reinforcement		
Required steel area, As	4604.625 mm ²	
Required spacing	221.06 say: 200 mm	
Provided steel for breast wall, As	5089.38 mm ²	
Compression fiber to neutral axis. c	104.40 mm	
Depth of compression block, a	88.74 mm	
Nominal moment capacity of section M_{-}	3874.91 kN-m	
Resistance factor. \emptyset	0.9 tension is controlled	
$0.75 \le \phi = 0.65 + 0.15 (d_{eff}/c - 1) \le 0.9$		
Ultimate moment capacity of section, ϕM_{π}	3487.41 kN-m OK!	
	c/d = 1.10	

Control of cracking by distribution of reinforcement		• DGCS 12.4.3.4
Applies to all reinforcements of concrete that exceeds 80% of the modulus of	rupture, except deck slabs.	
Moment demand at Service 1	836.20 kN-m	• DGCS 12.1.1.6
80% of Modulus of rupture, f_r	2.201 MPa	
Tension in the cross section	2.754 MPa	
Tension in the cross-section exceeds 80% of the modulus of rupture, this p	provision has to be satisfied	
Working Stress Design (WSD) - Transform Method b h d h d d g g g g g g g g g g g g g g g	red Section fic fic fs/n	•by quadratic
Extreme tension fiber to center of flexural reinforcement, d_c	121 mm	equation to determine
Overall thickness of component, h	2000 mm	x:
Compression fiber to the centroid of extreme tension steel, d_e	18/9 mm	b = 81855.53
Neutral axis to extreme compression riber, x	200 CDa	c = -1.5E+08
Modulus elasticity of scenerate E	200 GPa	
Modulus elasticity of concrete, E_c	24.87 GPa	$x_1 = 353.38$ $x_1 = -435.24$
$ \begin{array}{c} \text{Would fallo, } n \\ \text{Cracked section moment of inertia of section} \\ I \end{array} $	0.042	x1 - +55.2+
Exposure factor, χ	1.1L+11 mm	
Exposure condition: Class 1	1.00	
Tensile stress in steel reinforcement at the service limit, f_s	204.85 MPa	
$\beta s = 1 + d_c / (0.7 (h - dc))$	1.09	
The spacing shall satisfy: $s \leq 123000\gamma_{e/}\beta_s f_{ss} - 2dc$	307.84 mm	
Initial spacing: 200 mm SATISFIED! Using of 36mm Ø main bars spaced at 200mm O.C. for breast wal	I is adequate and safe	

7.5.5 Verification of shear resistance

Effective shear depth, d_v	183	34.63 mm	• DGCS 12.5.3.2
Taken as the distance measured perpendicular to the neutral axis, between the resultants of the tensile and compressive forces due to flexure; it need not to be taken to be less than the greater of 0.9de or 0.72h	=0.9 * de 10 =0.72 * h	691.1 mm 1440 mm	

Factor indicating ability of diagonally cracked concrete to transmit tensi	on. 1.30			Commentary
Solution for B: GENERAL PROCEDURE				• General
				basically
Area of practrassing stal on tansion side A	0	2		applicable to
Area of prestressing steel on tension side, A_{ps}	0	mm		design of walls,
Area of non-prestressing steel, A_s	5089.38	mm^2		slab and footings
Maximum aggregate size, a_g	20	mm		400mm
Modulus of elasticity of prestressing tendons, f_{po}	0	MPa		
Factored axial force, N_u	-932726.2	N		• DGCS 12.5.3.3.2
*Positive for tension; Negative for compression				
Factored shear force, V_u	765415.9	Ν		
Absolute value of the factored moment, M_u	3.2E+09	N-mm		
*But not less than $ V_u - V_p d_v$				
Modulus of elasticity of prestressing steel, E_p	0	GPa		
Modulus of elasticity of steel, E_s	200	GPa		
Net longitudinal tensile strain, e_s	0.001			
Crack spacing parameter, S_{xe}	1741	mm		
Shear resistance from steel, V_s	0	kN		
Effective prestressing force, V_p	0	kN		
Shear resistance provided by concrete, V_c	1048.26	kN		
The nominal shear resistance, V_n	1048.26	kN		
*shall be determined as the lesser of:				
$V_n = Vc + Vs + Vp$	1048.26	kN		
$V_n=0.25 fc^{\prime} b_v d_v + V p$	12842.40	kN		
Resistance factor for normal weight concrete, ϕ	0.9			
Ultimate shear capacity of section,	943.44	kN	OK!	
	c/d =	1.2	3	
Section without shear reinforcement is adequate and safe.				

7.5.6 Verification of interface shear resistance

Interface shear transfer shall be considered across a given plane at: a) An existing or potential crack b) An interface between dessimilar materials			•DGCS 12.5.5
c) An interface between two concrete cast at different times			
<i>d)</i> The interface between different elements of the cross-section			
Number of bars provided (for both faces per meter strip), N Area of shear reinforcement crossing the shear plane, A _{vf} *Minimum area of shear interface shall satisfy:	10 pcs 10178.8 mm ²		•N= (b/s) x 2sides •DGCS 12.5.5.3
$A_{vf} \ge (0.35 A_{cv})/f_y$	1472.530 mm ²	SATISFIED!	

	1000			Commentary
Interface length considered to be engaged inshear transfer, L_{vi}	1000	mm		
Interface width considered to be engaged inshear transfer, b_{vi}	1746	mm		
Area of concrete considered to be engaged in interface shear transfer, A_{cv}	1746000	mm^2		
Permanent net compressive force normal to the shear plan, P_c	932726	Ν		
Factored interface shear force due to total load, V_{ui}	765.416	kN		
Cohesion and friction factors			•	DGCS 12.5.5.2
*for concrete placed against a clean concrete surface, free of laitance, roughened to an amplitude of 6mm:	with surfa	ce intentio	onally	
Cohesion factor, c	1.7	MPa		
Friction factor, m	1.00			
Fraction of concrete to resist interface shear, K_1	0.25			
Limiting interface shear resistance, K_2	10.3	MPa		
The nominal shear resistance of the interface plane shall be taken as:				
$V_{ni} = cA_{cv} + \mu(Avff_v + Pc)$	8125.11	kN		
The nominal shear resistance, V_{ni} shall not be greater than the lesser of	of:			
a) $K_1 f^{\prime} c A_{cv}$	12222	kN		
b) K_2A_{cv}	17983.80	kN		
Nominal shear resistance of the interface plane, V_{ni}	8125.11	kN		
Resistance factor for normal weight concrete, f	0.9			
Factored interace shear resistance of the section, V_{ri}	7312.60	kN	OK!	
Section is adequate for interface shear transfer.				

7.5.7 Verification of shrinkage and temperature reinforcement

Reinforcement for shrinkage and temperature stress daily temperaturechanges and in structural mass cor	•DGCS 12.7.8			
Diameter of shrinkage and temperature bar Assumed spacing S		16 150	mm	
Assumed shrinkage and temperature reinforcement,	A _s	1.34	mm ² /mm	
Shrinkage and temperature reinforcement shall sat	isfy:			
a) $As \ge (0.75 bh)/(2 (b+h)f_y)$	1.43	1.43	mm ² /mm	
<i>b</i>) $0.233 \le As \le 1.27$		1.2700	mm ² /mm	
Spacing shall not exceed: a) 3.0 times the component thickness, or 450 m b) 300 mm for walls and footings greater than c) 300 mm for other components greather than	m 450 mm thick 900 mm thick			

				Commentary
Final shrinkage and temperature reinforcement, A _s		1270	mm ² per meter	
Final spacing to be used		158	mm	
	say:	150	mm	
Therefore use 16mm for temperature and shrinkage bar s				

7.5.8 Development of reinforcement

Diameter of main bars, d_b	36	mm		•DGCS 12.8.2.1
Area of main bars, A_b	1017.88	mm^2		
Basic tension development length, l_{db}	1596.59	mm		
Minimum development length (only for d _b 36 mm and lesser)	896.4	mm		
Modification Factor That Decrease				
Modification factor 1	0.8			
Modification factor 2	0.905			
Final development length, l_d	1155.62	say:	<mark>1500</mark> mm	
Note: For effective anchorage the rebars should rest on pi	lecap bottom bars			

7.5.9 Verification of demand forces for unseating prevention device for backwall.

The ultimate strenght of an unseating prevention device	han the	•BSDS 7.3	
design seismic force.			
H_{E} M_{d} H_{dirac}	en the unseating prev ctly connects the sup design seismic force $H_F = PL_G$ wever, H_F shall not en- lesser value corresp ral (hor'l) capacity of a calculated from its ra- ural resistance, or the ar resistance of the b	ention device erstructure, shall be: exceed 1.5 R _D onding to the breast nominal e nominal reast wall.	
Distance of unseating prevention device from the base of backwall,	d 0.6 m		
Nominal flexural resistance of the breast wall, M_n	3874.91 kN-1	n	
Deadload reaction from superstructure (per meter strip), R_D	266.67 kN		
a. Lateral capacity of breast wall from its nominal flexural resistanc	e 516.65 kN	$= M_n / h_{br}$	
b. Nominal shear resistance of the breast wall, V_n	1048.26 kN		
c. 1.5 times the deadload reaction of superstructure	400 kN		
Therefore, the design seismic force of the unseating prevention dev	ce 400 kN	$=H_F$	
Design moment to be considered in designing the backwall, M_d	240 kN-1	$=H_F x d$	

7.6 DESIGN OF WING WALLS

7.6.1 Diagram of forces acting to wing wall

7.6.2 Determine the applicable loads acting to each part (part "A", "B" and "C") as shown in the shape of wing wall (a).

					Commentar
Calculation of horizontal pressure:	programs at bd' (for Us)	pressure at h''d''	(for H9 -1 0m)	1	
due to lateral pressure	Pressure at bu (Ior na)	pressure at b u			
uut to lateral pressure	no1 = 40.06	$\ln \alpha$	(0m) = 25.11	-	
$pa_1 - ka^{-1}r_s$ na	pa1 = 40.96	$pa2 - ka^2 TS^2 (Ha -)$	$\frac{1.011}{1.011} = \frac{55.11}{55.11}$	-	
$p_{AE1} = K_{AE} + I_s + Ha$	$p_{AE1} = 70.89$	$p_{AE}2 = KAE^* I S^* (Ha)$	-1.0m = 60.76		
$p_{sur} = Ka + I_s + n_{sur}$	$p_{sur} = 3.57$	-			
$p_{apch} = ka * Y c * h_{apch}$	$p_{apch} = 3.33$				
due to Inertial mass, p _{IR}					
$khW_{ww} = kh^*(L_{ww}^*Ha^*t_{ww}^*\Upsilon_c)$	$khW_{ww} = 105.18$	kN			
Calculation of forces per unit lengtl	n: bv = 1.00	m			
Loads	Force, kN	Lever ar	m, m Momer	nt,kN*m	
Earth pressure (EH)	(pa1 +pa2)/2 *L _{ww} *bv =	114.11 $L_{ww}/2 =$	1.5 17	1.17	
Seismic earth pressure (p _{AE})	$(p_{AE1} + p_{AE2})/2 * L_{ww} * bv =$	197.48 L _{ww} /2 =	1.5 290	5.21	
Liveload surcharge(LS)	$p_{sur} * L_{ww} * bv =$	10.71 L _{ww} /2 =	1.5 16	.06	
Earth surcharge(ES)	$p_{apch} * L_{ww} * bv =$	9.98 L _{ww} /2 =	1.5 14	.97	
Inertial force mass (p _{IR})	khW _{ww} /Ha =	$15.03 L_{ww}/2 =$	1.5 22	.54	
<u>PART "B"</u>		where : M	loment = Force	x lever arm	
by Hb b ¹ Hb b ¹ Hb b ¹ Hb c ² C C C C C C C C C C C C C C C C C C C	₽ _{sur}	paph pa1 pa3 pa3 pa	P _{AE1}	E	
l pr l	Diagram of latera	l forces of part "B" a	nd "C"		
Calculation of horizontal press	ure :				
Loads	pressure at bd' (fe	or Ha) pressure	at b' O' (for I	Ha+Hb/2)	
due to lateral pressure	kPa		kPa		
$pa1 = ka^* \Upsilon_s^* Ha$	pa1 = see ab	$pxe pa3 = ka^{*}$	Ys*(Ha+Hb/2)	= 49.74	
$p_{AE1} = k_{AE} * \Upsilon_s * Ha$	$p_{AE1} = see ab$	pive $p_{AE3} = kAI$	E*Ys*(Ha +Hb/2)	⊨ 86.08	
$\mathbf{p}_{\mathrm{sur}} = \mathbf{ka} * \Upsilon_{\mathrm{s}} * \mathbf{h}_{\mathrm{sur}}$	$p_{sur} = see ab$	ove			
$p_{apch} = ka * \Upsilon c * h_{apch}$	$p_{apch} = see ab$	ove			
due to Inertial mass, p _{IR}	a)				
$khW_{ww} = kh^*(1/2^*L_{ww}^*Hb^*t_{ww}^*)$	(c) khW _{ww} =	22.54 kN			
Note: 3/4 L _{ww} is average leng	gth between b-b'	where : M	oment = Force x	k lever arm	

						Comment
PART "C" (refer to figure of PAR	RT ''B'')					
Calculation of horizontal pressure:						
Loads	pressure at cd (for	rH)				
due to lateral pressure	kPa					
pa = ka*Y _s *H	pa=	58.52				
$p_{AE} = k_{AE} * \Upsilon_s * H$	p _{AE} =	101.27				
$\mathbf{p}_{\rm sur} = \mathbf{ka} * \Upsilon_{\rm s} * \mathbf{h}_{\rm sur}$	$p_{sur} = see abo$	ve				
$p_{apch} = ka * \Upsilon c * h_{apch}$	$p_{apch} = see abo$	ve				
due to Inertial mass, p _{IR}	-					
$khW_{ww} = kh^*(1/2*L_{ww}*Hb*t_{ww}*\Upsilon_c)$	khW _{ww} =	22.54 kN				
Calculation of forces per unit leng	th: bv =	1.00 m				
Loads	Force,	kN	Lever A	rm , m	Moment,kN*m	
Earth pressure(EH)	pa*3/4 Hb*bv =	131.67	3/4Hb/2 =	1.125	148.13	
Seismic earth pressure (pAE)	p_{AE} $\overline{*3/4Hb*bv} =$	227.86	3/4Hb/2 =	1.125	256.34	
Liveload surcharge(LS)	p _{sur} *3/4 *Hb*bv =	8.03	3/4Hb/2 =	1.125	9.04	
Earth surcharge(ES)	$p_{apch} * 3/4 *Hb*bv =$	7.48	3/4Hb/2 =	1.125	8.42	
Inertial force mass(p _{IR})	$khW_{ww}/Lww =$	7.51	3/4Hb/2 =	1.125	8.45	
Note: 3/4 Hb is average height betwee	n c'-d		where : Mo	ment = Fo	orce x lever arm	

7.6.3 Design Part "A"

Summary o	f unfactored loads			• The load		
Loads	Force, kN	Moment,kN*m	$\eta = 1.0$ for other bridges hence modifier for	$\eta = 1.0$ for other bridges reir hence modifier for	$\eta = 1.0$ for other bridges	reinforced design is
Earth pressure (EH)	114.11	171.17			basically same approach as to breast	
Seismic earth pressure (pAE)	197.48	296.21	wingwalls is assumed 1.0	wall and backwall		
Liveload surcharge(LS)	10.71	16.06		design.		
Earth surcharge(ES)	9.98	14.97				
Inertial force mass (p _{IR})	15.03	22.54				
a. Load Combinatio	ns: 1	Factored Loa	ds			

	Load factor			Factored Loads						
			Loads	Force	e, kN	Moment,kN*m				
	max	min		max	min	max	min			
	1.5	0.9	EH	171.17	102.70	256.76	154.05			
	1.75	0	LS	18.74	0.00	28.11	0.00			
	1.5	0.75	ES	14.97	7.48	22.45	11.23			
			Total	204.88	110.19	307.32	165.28			

7 -35

EXTREME EVENT - 1 : CASE 1 (100% P_{AE} + 50% P_{IR})									
Lastfrater			Factored Loads						
Load factor		Loads	Force	e, kN	Momen	t,kN*m			
max	min		max	min	max	min			
1	0	p_{AE}	197.48	0.00	296.21	0.00			
0.5	0	LS	5.35	0.00	8.03	0.00			
1.5	0.75	ES	14.97	7.48	22.45	11.23			
1	0	50% p _{IR}	7.51	0.00	11.27	0.00			
		Total	225.31	7.48	337.97	11.23			

EXTREME EVENT - 1 : CASE 2 (50% P_{AE} +100% P_{IR})

Verification: if 50	$0\% P_{AE} < Pa$, use Pa,	else use 50% PAE
Force, k	٢N		Moment, kN*m
$50\% P_{AE} =$	98.74		50% P _{AE} 148.10
Pa =EH =	114.11		Pa =EH = 171.1

• It shows 50% PAE is lesser than Pa (=EH), therefore use Pa.

50% P_{AE} 148.107

Pa =EH = 171.17

Load factor			Factored Loads					
Load factor		Loads	Force	e, kN	Momen	t,kN*m		
max	min		max	min	max	min		
1.0	0	EH	114.11	0.00	171.17	0.00		
0.5	0	LS	5.35 0.00		8.03	0.00		
1.5	0.75	ES	14.97	7.48	22.45	11.23		
1.0	0	p _{IR}	15.03	0.00	22.54	0.00		
		Total	149.46	7.48	224.19	11.23		

SERVICE - 1

Load factor			Fac			
Load factor		Loads	Force	e, kN	Momen	t,kN*m
max	min		max	min	max	min
1	0	EH	114.11	0.00	171.17	0.00
1	0	LS	10.71	0.00	16.06	0.00
1	0	ES	9.98	0.00	14.97	0.00
		Total	134.80	0.00	202.20	0.00

b. Determine the governing design forces:

Load Combination: EXTREME EVENT I (CASE 1)

Shear Force =	225.31	kN
Moment =	337.97	kN-m

•The load combinations show that the Extreme Event 1 (Case 1) is the critical load case.

Commentary

				Commentary
c. Verification of flexural resistance				
Moment demand Md -		337 97	kNm	
Main reinf (inner face/horizontal) db1 $Ab1-40$	1 2	25	mm	
Secondary print (anter face/horizontal), doi ADI ADI 49	1 mm	23	111111	
Secondary remi. (outer face/nor l and vertical), $db2$ $Ab2= 20$	¹ mm ²	16	mm	
conc. cover, cc		75	mm	
concrete compressive strength, f'c		28	MPa	
yield strenght of steel, fy		415	MPa	
thickness of wall, tww		700	mm	
unit width of wall, by		1000.0	mm	• per 1m-width
Height of wall. Ha		7000.0	mm	design
Length of wall Lww		3000.0	mm	
Minimum rainforcement		5000.0		• DGCS 12.4.3.3
Mininum remotement				
$M_{cr} = \mathcal{Y} (\mathcal{Y} f) \mathbf{S}$				
$Mcr = I_3 (I_1 I_r) S_c$				
where:				
fr = 3.334 MPa ($fr = 0.63*Vf'c$)				
$Y_{1=}$ 1.6 *for all other concrete				
$\Upsilon_{3=}$ 0.67 *for A615, 414MPa steel				
$S_c = 1/6(bt^2)$ Section modulus				
$S_c = (bv*tww^2)/6$				
$S_c = 81,666,666.7 \text{ mm}^3$				
$Mcr = \Upsilon_3 (\Upsilon_1 f_r) S_c = 291.88 \text{ kN-m}$				
Mu_min 1.33*Md = 449.50 kN-m				
Condition: if Md > (min (Mcr, Mu_min), Md, (min (Mcr,Mu_min))				
Therefore, $Md = 337.97$ kN-m				
Computation for main reinforcement				
effective $de = tww-cc-1/2$ main reinf	de=	613	mm	
m1=0.85*f'c/fy=	m1	0.057		
m2=2/(0.85*f'c)=	m2	0.084	mm ² /N	
$Rn = Md/(\emptyset \text{ bv*de^2})$	Rn=	1.001	Mpa	
$\rho = m1^{*}(1-sqrt(1-m2^{*}Rn)) =$	ρ =	0.002465	2	
$As = \rho * bv *de =$ $S = Ab1*bu/As$	As = s - b	1509.785	mm² mm	
S = ADT OV/AS Try : cay S prov =	S =	250	mm	
As prov = $Ab1*bv/S$ prov	As prov	1963	mm ²	
$\beta =$	$\beta =$	0.85	111111	
$c = As \text{ prov } *fy/0.85*f'c*\beta*bv$	c=	40.26	mm	
$a=c^*\beta 1=$	a=	34.22	mm	
$Mn = (As_prov*fy)(de-a/2) =$	Mn =	484.9	kN-m	
Check net tensile strain, ɛt				
$\epsilon t = 0.003*((de/c)-1) =$	εt =	0.043	> 0.005	
Tension Controlled !!!, Reduction factor =0.9				
Ultimate moment capacity of section,	ØMn =	436.4	kN-m	
	c/d =	1.29		
Section is safe in flexure!!!				

							Commentary
Allowable $f_{ss} = 123000 * \Upsilon_e / (\beta_s)$	(S_prov	+ 2*d _c))		240.4	>Actual f _{ss} =	179.94	
	1	-,,			Section 12.4	.3.4 satisfied!!!	
					< 0.6fy =	249	
					Section 12.4	1.3.4 satisfied!!!	
	The	refore usi	ing 25m	m diam	@ 250 is add	equate	
Chaol: for minimum anoting of winforcom	ant						• DGCS 12 7 3 1
<u>Check for minimum spacing of reinforcem</u>	<u>ent.</u>						DGC5 12.7.5.1
For cast in place concrete, clear distance betwee	een paralle	er bars in a	a layer sh	all not be	less than:		
• 1.5 x nominal diam of bars	=	37.5	mm	satisfied	d the required	min. spacing!!!	
• 1.5 x maximum size of aggregates	=	37.5	mm	satisfied	d the required	min. spacing!!!	
• 38mm	=	38	mm	satisfied	d the required	min. spacing!!!	
			- 1 - 1 - 1)				
Check for maximum spacing of reinforcen	nent (for	walls and	<u>slabs)</u>				• DGCS 12.7.3.2
• s < 1.5 x t	=	1050	mm	satisfied	d the required	max. spacing!!!	
• 450mm	=	450	mm	satisfied	d the required	max. spacing!!!	
d Varification of shear resists	nco						• DGCS 12 5 3 2
a. verification of shear reside	ance						· DGC5 12.5.5.2
 Simplied procedure for non-prestressed 	stalice.						
General procedure	procedure	e is annlice	able for a	design of	winowall		• DGCS 12.5.3.3.2
 Simplied procedure for prestressed and 	prestress	ed section	s	uesigii oi	w ing w an		
01 1 1 771					005 01	1.53	
Shear demand, $Vd =$	V_{n2}				225.31	KIN	
where :	VII2)						
Vn1 - Vc + Vs							
$Vc = 0.083*\beta(\sqrt{fc})by dy$							
$Vs = [Av*fv*dv*(\cot \theta + \cot \alpha)*si$	nαl						
s							
Vn2 = 0.25 * f'c * bv * dv							
de = 613 r	mm						
dv1 = (de - a/2) 595 r	mm						
dv2= 0.9 x de 551 r	mm						
dv3= 0.72tww 504 r	mm						
dv= 595 1	mm						
Calculate for β :							
$\beta = \frac{4.8}{51}$	DGCS	Eq 12.5	5.3-2				
$P = (1+750\varepsilon_s)(39+s_{\chi e})$	β in en	iglish un	its				
where :							
$\binom{ M_u }{ M_u } = 0$ EN + $ V $	$-V_m -A_m$	(fng)					
	in nn	s ma i					
$\varepsilon_s = \frac{\left(\frac{d_v}{d_v} + 0.5N_u + v_u \right)}{(1 + 1)^2}$		<i>sip0)</i>					

			Commentary
	where	:	
	Vni = c	$A_{cv} + \mu \left(A_{vf} fy + P_c\right)$	
	Vni≤ ⊥	$\min \left(K_1 f'_c A_{cv}, K_2 A_{cv} \right)$	
	$A_{cv} =$	area of concrete cosidered to be engaged in interface $529,500 \text{ mm}^2$	
		shear transfer, mm ²	
	h _	$= b_{vi} L_{vi}$	
	U _{vi} –	transfer. mm	
		= tww - 2x cc-1/2(db1)-1/2(db2)*bv	
	$L_{vi} =$	interface length considered to be engaged in shear 1000.0 mm	
		transfer, = bv, mm	
	$A_{\rm vf} =$	area of shear reinf. crossing the shear plane within the 2766 mm^2	
		area of A_{cv} , mm ²	
		inner face = $A_{prov} = 1963 \text{ mm}^2$	
		outer face = $Ab2*bv/S_outerface$ 803.84 mm ²	
		Note: area of outer face to be confirmed, see Shrinkage /Temp bars computations.	
		try S_outerface = 250 mm	•DGCS 12.5.5.2
	c =	cohesion factor, MPa 1.7 MPa	
	μ =	triction factor, MPa	
	Iy = P - P	permanent net compressive normal to the shear plane: if	
	1 _c -	force is tensile, $P_c=0.0$ kN	
	f' _c =	compressive strength of the weaker concrete either side 28 MPa of the interface, MPa	
	$K_1 =$	fraction of concrete available to resist interface transfer 0.25 shear,	
	$K_2\!=\!$	limiting interface shear resistance 10.3 MPa	
	Vni = c	$A_{cv} + \mu \left(A_{vf} fy + P_c\right) $ 2048 kN	
	Vn1 =k	3,707 kN	
	Vn2 = 1	K ₂ A _{cv} 5,454 kN	
		Therefore, Vni = 2048 kN	
		Factored interface resistance, $Vri = \emptyset Vni =$ 1843.363 kN	
		Shear demand, $Vd = Vui$ $Vui = 225.31$ kN	
		C/d = 8.18 Section is safe in interface shear!!!	
	Minimu	im area of interface shear	•DGCS 12.5.5.3
		$A_{vf} \ge 0.35 A_{cv}/fy = 446.57 \text{ mm}^2$	
		satisfied the required min. area!!!	
f.	Verificat	ion of shrinkage and temperature reinforcement	•DGCS 12.7.8
	Ast = 0.75(b	xh)/2(b+h)fy	
	Limitations:	0.223 <ast<1.27< td=""><td></td></ast<1.27<>	
	whore		
	where:		
	b = least wid	Ith of component section, mm 7000.0 mm	
	h=least thick	ness of component section, mm 700.0 mm	

			Limita theref	Ast= ations: 0.223 db1 = Ab1= S = S = sing: Ast=	0.575 mm ² /m <ast<1.27 0.575 mm²/m = 16 mm 201 mm² Ab1/ Ast 349.479 say Ab1/S_prov = Us</ast<1.27 	m m each fac S_prov 0.8038 se : 16	$= \frac{250}{\text{mm}} \text{mm}^2/\text{mm}$	
	where S	pacing S is: 1 not be greater than	3 X thick	ness or 450mm	satisfied the	@ oi reauired m	iter face/bothway	
 S should not be greater than 3 X thickness, or 450mm satisfied the required min. spacing!!! S should not be greater than 300 for walls and footings > 450mm. satisfied the required min. spacing!!! S should be 300mm for other components > 900mm thick. 								
g.	Devel	opment leng	th of th	e reinforcem	ent.			•DGCS 12.8.2.1
		De	evelopmen	nt length of bars ι	inder tension.			
sizes	Ab	l _{db}		Modification factors(MF) that	Modification factors(MF) that	l _{d =ldb*MF}		
51265	mm ²	mm		increase ld	decrease l _d	mm		
36	1 1							
	1017.36		1596					
25	1017.36 490.625	0.02*Ab*fy/√f'c	1596 770	Note: factors are		616		
25 28	1017.36 490.625 615.44	0.02*Ab*fy/√f°c OR	1596 770 965	Note: factors are not applicable in	see below factors	616		
25 28 20	1017.36 490.625 615.44 314	0.02*Ab*fy/√f°c OR .06d _b fy-minimum	1596 770 965 498	Note: factors are not applicable in this exercise	see below factors	616		
25 28 20 16	1017.36 490.625 615.44 314 200.96	0.02*Ab*fy/√f°c OR .06d _b fy-minimum	1596 770 965 498 398	Note: factors are not applicable in this exercise	see below factors	616		
25 28 20 16 fy =	1017.36 490.625 615.44 314 200.96 415	0.02*Ab*fy/√f°c OR .06d _b fy-minimum MPa Note:	1596 770 965 498 398 (a) Reinf	Note: factors are not applicable in this exercise	see below factors	616 319 under cons	ideration space	
25 28 20 16 $fy =$ $f'c =$	1017.36 490.625 615.44 314 200.96 415 28	0.02*Ab*fy/√f°c OR .06dbfy-minimum MPa Note: MPa	1596 770 965 498 398 (a) Reinf laterally n	Note: factors are not applicable in this exercise orcement being dev ot less than 150mm in the direction of	see below factors veloped in the length the croc and not less the spacing ME = 0	616 319 under cons than 75mm	ideration space clear cover	
25 28 20 16 $fy =$ $f'c =$ $Id = 300m$	1017.36 490.625 615.44 314 200.96 415 28 m minimu	0.02*Ab*fy/√f°c OR .06d _b fy-minimum MPa Note: MPa um	1596 770 965 498 398 (a) Reinf laterally n measured	Note: factors are not applicable in this exercise orcement being dev ot less than 150mm in the direction of	see below factors veloped in the length the spacing., MF =0	616 319 under cons than 75mm).8	ideration space clear cover	
25 28 20 16 fy = f'c = ld =300m MF = A	1017.36 490.625 615.44 314 200.96 415 28 m minimu As_req'd/A	0.02*Ab*fy/√f°c OR .06dbfy-minimum MPa Note: MPa im s_prov	1596 770 965 498 398 (a) Reinf laterally n measured (b) Ancho required o	Note: factors are not applicable in this exercise orcement being dev ot less than 150mm in the direction of orage or developme or where reinf. in fl	see below factors veloped in the length in c to c and not less the spacing., MF =0 ant for the full yield st exural is in excess of	616 319 under cons than 75mm).8 trength of r	ideration space clear cover einf. is not ed by analysis.	

7.6.4 Design Part "B"

Summary c	Summary of unfactored loads						
Loads	Force, kN	Moment,kN*m	combinations and				
Earth pressure (EH)	102.04	114.80	governing forces for Parts "B" and "C" o the wing wall. The design analysis is skipped since the design approach is similar to Part "A".				
Seismic earth pressure (p _{AE})	176.59	198.66					
Liveload surcharge(LS)	8.03	9.04					
Earth surcharge(ES)	7.48	8.42					
Inertial force mass (p _{IR})	7.51	8.45					
Load Combinations:			governing design forces of Part "A"i relatively larger th design forces for F "B" and "C"				

STRENGTH - 1

Factored Loads Load factor Force, kN Moment,kN*m Loads max min max min max min 1.5 0.9 EH 153.07 91.84 172.20 103.32 LS 1.75 0 14.06 0.00 15.81 0.00 1.5 ES 11.23 12.63 0.75 5.61 6.31 Total 178.35 97.45 200.64 109.63

Commentary

For detailing purposes, adopt the design results of Part "A".

EXTREME EVENT - 1 : CASE 1 (100% P_{AE} + 50% P_{IR})

Load factor			Factored Loads			
		Loads	Force, kN		Moment,kN*m	
max	min		max	min	max	min
1	0	p_{AE}	176.59	0.00	198.66	0.00
0.5	0	LS	4.02	0.00	4.52	4.52
1.5	0.75	ES	11.23	5.61	12.63	12.63
1	0	50% p _{IR}	3.76	0.00	4.23	4.23
		Total	195.59	5.61	220.04	21.37

EXTREME EVENT - 1 : CASE 2 (50% P_{AE} +100% P_{IR})

Verification: if $50\% P_{AE} < Pa$, use Pa, else use $50\% P_{AE}$

Force, kN 50% P_{AE} = 88.29 Pa =EH = 102.04

Moment, kN*m 50% $P_{AE} =$ 99.33 Pa =EH = 114.80

Load factor			Factored Loads			
		Loads	Force, kN		Moment,kN*m	
max	min		max	min	max	min
1.0	0	EH	102.04	0.00	114.80	0.00
0.5	0	LS	4.02	0.00	4.52	0.00
1.5	0.75	ES	11.23	5.61	12.63	6.31
1.0	0	p _{IR}	7.51	0.00	8.45	0.00
		Total	124.80	5.61	140.40	6.31

• It shows 50% PAE is lesser than Pa (=EH), therefore use Pa.

SERVICE - 1

Load factor			Fac			
		Loads	Force, kN		Moment, kN*m	
max	min		max	min	max	min
1	0	EH	102.04	0.00	114.80	0.00
1	0	LS	8.03	0.00	9.04	0.00
1	0	ES	7.48	0.00	8.42	0.00
		Total	117.56	0.00	132.26	0.00

Commentary

7.6.5 Design Part "C"

Summary of unfactored loads						
Loads	Force, kN	Moment,kN*m				
Earth pressure (EH)	131.67	148.13				
Seismic earth pressure (p _{AE})	227.86	256.34				
Liveload surcharge(LS)	8.03	9.04				
Earth surcharge(ES)	7.48	8.42				
Inertial force mass (p _{IR})	7.51	8.45				

a. Load Combinations:

STRENGTH - 1

Load factor			Factored Loads			
Load	Load factor		Force, kN		Moment,kN*m	
max	min		max	min	max	min
1.5	0.9	EH	197.51	118.50	222.19	133.32
1.75	0	LS	14.06	0.00	15.81	0.00
1.5	0.75	ES	11.23	5.61	12.63	6.31
		Total	222.79	124.12	250.64	139.63

EXTREME EVENT - 1 : CASE 1 (100% $P_{\rm AE}$ + 50% $P_{\rm IR}$)

Load factor			Factored Loads			
		Loads	Force, kN		Moment,kN*m	
max	min		max	min	max	min
1	0	p_{AE}	227.86	0.00	256.34	0.00
0.5	0	LS	4.02	0.00	4.52	4.52
1.5	0.75	ES	11.23	5.61	12.63	12.63
1	0	50% p _{IR}	3.76	0.00	4.23	4.23
		Total	246.86	5.61	277.71	21.37

EXTREME EVENT - 1 : CASE 2 (50% $P_{\rm AE}$ +100% $P_{\rm IR}$)

Verification: if $50\% P_{AE} < Pa$, use Pa, else use $50\% P_{AE}$

Force, kN	
50% $P_{AE} =$	113.93
Pa =EH =	131.67

Moment, kN*m				
$50\% P_{AE} =$	128.17			
Pa =EH =	148.13			

• It shows 50% PAE is lesser than Pa (=EH), therefore use Pa.

Lood factor			Factored Loads			
Load	Load factor		Force, kN		Moment,kN*m	
max	min		max	min	max	min
1.0	0	EH	131.67	0.00	148.13	0.00
0.5	0	LS	4.02	0.00	4.52	0.00
1.5	0.75	ES	11.23	5.61	12.63	6.31
1.0	0	p _{IR}	7.51	0.00	8.45	0.00
		Total	154.43	5.61	173.73	6.31

SERVICE - 1						_
Lood footor		Fac	tored Loa	ıds		
Load factor	Loads	Force, kN		Momer	nt,kN*m	
max min		max	min	max	min	
1 0	EH	131.67	0.00	148.13	0.00	
1 0	LS	8.03	0.00	9.04	0.00	
1 0	ES	7.48	0.00	8.42	0.00	
	Total	147.19	0.00	165.58	0.00	

7.6.6 Wing wall details

7.7 DESIGN OF PILE CAP

7.7.1 Determine the applicable loads calculated from section 7.3 Geometry and Load Calculations

1. Permanent loads			
Dead load rection force of the superstructure, DC 1	2800	kN	•Note: Loads considering full length of abutment
Dead load from self weight, DC 2			
a) Weight of backwall, DC 2.1	328	kN	
b) Weight of corbel, DC 2.2	44.10	kN	
c) Weight of breast wall, DC 2.3	3780	kN	

			Commentary
d) Weight of footing, DC 2.4	3528	kN	
e) Weight of wingwalls, DC 2.5	977.76	kN	
f) Weight of approach slab, DC 2.6	403.20	kN	
	7 00 7 0		
Vertical pressure from dead load of earth fill, EV	5985.0	kN	
Deadload of wearing surfaces and utilities, DW	150	kN	
Horizontal earth pressure load, $EH(=P_A)$	4430.80	kN	
Earth surcharge load, ES	373.12	kN	
2. Braking force, BF	110	kN	
3. Earthquake force, EQ			
Seismic active earth force, P_{AE}	7655.38	kN	
Seismic inertial force, P_{IR}			
a) kh * Backwall	86.81	kN	
b) kh * Corbel	11.69	kN	
c) kh * Breast wall	1001.70	kN	
d) kh * Footing	934.92	kN	
e) kh *Wing walls	259.11	kN	
f)kh *Approach slab	106.85	kN	
g)kh * Soil	1586.03	kN	
<i>C,</i>			
4. Vehicular live load	750	kN	
5. Live load surcharge, LS	450.46	kN	
6. Friction load, FR			
a) Strength 1			
- at maximum condition	755.63	kN	
- at minimum condition	392.63	kN	
b) Extreme event 1			
- at maximum condition	615	kN	
- at minimum condition	392.63	kN	
c) Service 1			
- at maximum condition	555	kN	
- at minimum condition	0	kN	
7. Stream Flow, WA			
Water load and stream pressure, WA			
a) Water load due to OWL, WA 1	1442.07	kN	
b) Water load due to DFL, WA 2	3965.69	kN	

7.7.2 Determine the load combinations with applied load modifiers and load factors.

Load modifier for maximum values, η_i	1.05
Load modifier for minimum values, η_i	0.95

Load	Combi	nation:	STRE	NGTH	1							
												 Application of
			Unfactore	d load kN				Fact	tored			modifiers are similar
Load 1	Factor	Load	Cinactore	u iouu, iii i	Lever	Avialfa	maa liN	Shoon f	ana IN	Momon	t IN m	to backwall.
max	min	Туре	Hor'l	Vert'l	(m)	Axiai IC	orce, kin	Shear Io	bree, kin	Momen	l, kin-iii	•Modifier, ηi
ших	11101				(/	max	min	max	min	max	min	$\eta_{\rm D} \ge 1.05$
1.25	0.90	DC 1	0.00	2800.00	0.80	3500.00	2520.00	0.00	0.00	2800.00	2016.00	$\eta_R \ge 1.00$
1.25	0.90	DC 2.1	0.00	327.60	-0.28	409.50	294.84	0.00	0.00	-114.66	-82.56	for max. values
1.25	0.90	DC 2.2	0.00	44.10	-0.68	55.13	39.69	0.00	0.00	-37.49	-26.99	$n_i = 1/(1.05 \times 1.0 \times 1.0)$
1.25	0.90	DC 2.3	0.00	3780.00	0.50	4725.00	3402.00	0.00	0.00	2362.50	1701.00	$n_{i} = 1.05$
1.25	0.90	DC 2.4	0.00	3528.00	0.00	4410.00	3175.20	0.00	0.00	0.00	0.00	for min values
1.25	0.90	DC 2.5	0.00	977.76	-2.00	1222.20	879.98	0.00	0.00	-2444.40	-1759.97	$\eta_i = 1/(1.05 \times 1.0 \times 1.0)$
1.25	0.90	DC 2.6	0.00	403.20	-0.68	504.00	362.88	0.00	0.00	-342.72	-246.76	$n_i = 0.95$
1.35	1.00	EV	0.00	5985.00	-2.00	8079.75	5985.00	0.00	0.00	-16159.50	-11970.00	- <u>I</u> I <u>=</u> 0190
1.50	0.65	DW	0.00	150.00	0.80	225.00	97.50	0.00	0.00	180.00	78.00	
1.50	0.90	EH	4430.80	0.00	4.00	0.00	0.00	6646.20	3987.72	26584.82	15950.89	
1.50	0.75	ES	373.12	0.00	6.00	0.00	0.00	559.68	279.84	3358.08	1679.04	Mater Estation former
		FR	0.00	0.00	9.50	0.00	0.00	755.63	392.63	7178.44	3729.94	•Note: Friction forces
1.75	0	LL	0.00	750.00	0.80	1312.50	0.00	0.00	0.00	1050.00	0.00	on section Geometry
1.75	0	BR	110.00	0.00	12.00	0.00	0.00	192.50	0.00	2310.00	0.00	and Load
1.75	0	LS	450.46	0.00	6.00	0.00	0.00	788.31	0.00	4729.88	0.00	Calculation.
1.00	0	WA 2	0.00	-3965.69	0.00	-3965.69	0.00	0.00	0.00	0.00	0.00	
			(Streng	th I) Des	ign load:	21501.25	15919.24	9389.44	4427.18	33027.70	10515.17	
Taad	Comb		EVTD			T						
Load	Combi	nation:	EXIK	EME I	EVENI			~				
Load	Combi	nation:	EXTR	EME	EVENI	I (CA	SE I) ((Case1: 1	00% PA	e + 50%	P _{IR})	
					_							
Load I	Factor	Load	Unfactore	d load, kN	Lever			Fact	tored			
	· ·	Type	Hor'l	Vert'l	arm	Axial fo	orce, kN	Shear fo	orce, kN	Momen	t, kN-m	
max	min	51.			(m)	max	min	max	min	max	min	
1.25	0.90	DC 1	0.00	2800.00	0.80	3500.00	2520.00	0.00	0.00	2800.00	2016.00	
1.25	0.90	DC 2.1	0.00	327.60	-0.24	409.50	294.84	0.00	0.00	-98.28	-70.76	
1.25	0.90	DC 2.2	0.00	44.10	-0.68	55.13	39.69	0.00	0.00	-37.49	-26.99	
1.25	0.90	DC 2.3	0.00	3780.00	0.50	4725.00	3402.00	0.00	0.00	2362.50	1701.00	
1.25	0.90	DC 2.4	0.00	3528.00	0.00	4410.00	3175.20	0.00	0.00	0.00	0.00	
1.25	0.90	DC 2.5	0.00	977.76	-2.00	1222.20	879.98	0.00	0.00	-2444.40	-1759.97	
1.25	0.90	DC 2.6	0.00	403.20	-0.68	504.00	362.88	0.00	0.00	-342.72	-246.76	
1.35	1.00	EV	0.00	5985.00	-2.00	8079.75	5985.00	0.00	0.00	-16159.50	-11970.00	
1.50	0.65	DW	0.00	150.00	0.80	225.00	97.50	0.00	0.00	180.00	78.00	
1.50	0.75	ES	373.12	0.00	6.00	0.00	0.00	559.68	279.84	3358.08	1679.04	
0.50	0.0	LL	0.00	750.00	0.80	375.00	0.00	0.00	0.00	300.00	0.00	
0.50	0.0	BR	110.00	0.00	12.00	0.00	0.00	55.00	0.00	660.00	0.00	
0.50	0.0	LS	450.46	0.00	6.00	0.00	0.00	225.23	0.00	1351.39	0.00	
		FR	0.00	0.00	9.50	0.00	0.00	615.00	392.63	5842.50	3729.94	•Note: Friction forces
1.00	0.0	WA 1	0.00	-1442.07	0.00	-1442.07	0.00	0.00	0.00	0.00	0.00	are already factored
1.00	0.0	PAF	7655.38	0.00	4.00	0.00	0.00	7655.38	0.00	30621.52	0.00	on section Geometry
1.00	0.0	50% P _{IR} a	86.81	0.00	10.75	0.00	0.00	43.41	0.00	466.63	0.00	and Load
1.00	0.0	50% Pir b	11.69	0.00	11.40	0.00	0.00	5.84	0.00	66.61	0.00	Calculation.
1.00	0.0	50%Pm_c	1001.70	0.00	5.75	0.00	0.00	500.85	0.00	2879.89	0.00	
1.00	0.0	50% Pm d	934.92	0.00	1.00	0.00	0.00	467.46	0.00	467.46	0.00	
1.00	0.0	50%Pm_e	259 11	0.00	6.85	0.00	0.00	129 55	0.00	887 44	0.00	
1.00	0.0	50% Pm f	106.85	0.00	11.83	0.00	0.00	53 42	0.00	632.01	0.00	 Modifier, ηi
1.00	0.0	50% Pm g	1586.03	0.00	10.00	0.00	0.00	793.01	0.00	7930 13	0.00	$\eta_{i} = 1.00$
1.00	(E	streme E	vent 1-C	ase1) Des	ign load:	22063.51	16757.09	11103.84	672.47	41723.77	-4870.50	
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								

Commentary

												Commentary
Load Combination: EXTREME EVENT I (CASE 2) (Case 2: 50% PAR + 100% PIR)												
Howeve	er, if 50%	$P_{AE} < P_A$, use P _A , 6	else use 50	%P _{AE}	Verificat	ion:	50% P _{AE}	=	3827.69		
P _A =EH						=	4430.80	> 50% P	AE	therefore	use EH	
Load	Factor	T 1	Unfactore	ed load, kN	Lever	Factored						
Loud	uetor	Load	Uor'l	Vort'l	arm	Axial fo	rce, kN	Shear fo	orce, kN	Momen	t, kN-m	
max	min	туре		veiti	(m)	max	min	max	min	max	min	
1.25	0.90	DC 1	0.00	2800.00	0.80	3500.00	2520.00	0.00	0.00	2800.00	2016.00	
1.25	0.90	DC 2.1	0.00	327.60	-0.24	409.50	294.84	0.00	0.00	-98.28	-70.76	
1.25	0.90	DC 2.2	0.00	11.69	-0.68	14.61	10.52	0.00	0.00	-9.93	-7.15	
1.25	0.90	DC 2.3	0.00	3780.00	0.50	4725.00	3402.00	0.00	0.00	2362.50	1701.00	
1.25	0.90	DC 2.4	0.00	3528.00	0.00	4410.00	3175.20	0.00	0.00	0.00	0.00	
1.25	0.90	DC 2.5	0.00	977.76	-2.00	1222.20	879.98	0.00	0.00	-2444.40	-1759.97	
1.25	0.90	DC 2.6	0.00	403.20	-0.68	504.00	362.88	0.00	0.00	-342.72	-246.76	
1.35	1.00	EV	0.00	5985.00	-2.00	8079.75	5985.00	0.00	0.00	-16159.50	-11970.00	
1.50	0.65	DW	0.00	150.00	0.80	225.00	97.50	0.00	0.00	180.00	78.00	
1.50	0.75	ES	373.12	0.00	6.00	0.00	0.00	559.68	279.84	3358.08	1679.04	
0.50	0.0	LL	0.00	750.00	0.80	375.00	0.00	0.00	0.00	300.00	0.00	
0.50	0.0	BF	110.00	0.00	12.00	0.00	0.00	55.00	0.00	660.00	0.00	
0.50	0.0	LS	450.46	0.00	6.00	0.00	0.00	225.23	0.00	1351.39	0.00	•Note: Friction forces
		FR	0.00	0.00	9.50	0.00	0.00	615.00	392.63	5842.50	3729.94	section Geometry and
1.00	0.00	WA 1	0.00	-1442.07	0.00	-1442.07	0.00	0.00	0.00	0.00	0.00	Load Calculation.
1.00	0.00	EH	4430.80	0.00	4.00	0.00	0.00	4430.80	0.00	17723.21	0.00	
1.00	0.00	P _{IR} _a	86.81	0.00	10.75	0.00	0.00	86.81	0.00	933.25	0.00	
1.00	0.00	P _{IR} b	11.69	0.00	11.40	0.00	0.00	11.69	0.00	133.23	0.00	
1.00	0.00	P _{IR} _c	1001.70	0.00	5.75	0.00	0.00	1001.70	0.00	5759.78	0.00	
1.00	0.00	P _{IR} _d	934.92	0.00	1.00	0.00	0.00	934.92	0.00	934.92	0.00	•Modifion ni
1.00	0.00	P _{IR} _e	239.11	0.00	0.85	0.00	0.00	259.11	0.00	1//4.88	0.00	n_{i-100}
1.00	0.00	P _{IR} _I	100.83	0.00	10.00	0.00	0.00	100.85	0.00	1204.01	0.00	1 1 - 1.00
1.00	0.00 (Ev	P _{IR_} g tromo Fr	1380.03	0.00	10.00	0.00	0.00	1380.03	0.00	13800.23	0.00	
	(EX	treme Ev	em 1-Ca	se 2) Des	ign ioau:	22022.77	10/2/.72	7012.02	0/2.4/	42103.17	-4050.00	
Load	Combi	nation	: SERV	ICE 1								
Lood	Factor		Unfactore	d load, kN	т			Fact	ored			
Load	Factor	Load			Lever	A 1 C	1 M	01 0	1 M	м	1.1.1	
		Туре	Hor'l	Vert'l	arm	AXIAI IO	rce, kn	Shear IC	orce, kin	Momen	t, KIN-M	
max	mın				(11)	max	min	max	min	max	min	
1.00	0.00	DC 1	0.00	2800.00	0.80	2800.00	0.00	0.00	0.00	2240.00	0.00	
1.00	0.00	DC 2.1	0.00	327.60	-0.24	327.60	0.00	0.00	0.00	-78.62	0.00	
1.00	0.00	DC 2.2	0.00	44.10	-0.68	44.10	0.00	0.00	0.00	-29.99	0.00	
1.00	0.00	DC 2.3	0.00	3780.00	0.50	3780.00	0.00	0.00	0.00	1890.00	0.00	
1.00	0.00	DC 2.4	0.00	3528.00	0.00	3528.00	0.00	0.00	0.00	0.00	0.00	
1.00	0.00	DC 2 5	0.00	977 76	-2.00	977 76	0.00	0.00	0.00	-1955.52	0.00	
1.00	0.00	DC 2.6	0.00	403.20	-0.68	403.20	0.00	0.00	0.00	-274 18	0.00	
1.00	0.00	DC 2.0	0.00	403.20	0.00	TUJ.20	0.00	0.00	0.00	217.10	0.00	

7 - 48

												Commentary
Load Factor Unfactored load, kN Lever								Fact	ored			
max	min	Load Type	Hor'l	Vert'l	arm (m)	Axial fo	rce, kN	Shear fo	orce, kN	Moment	t, kN-m	
ших	mm				()	max	min	max	min	max	min	
1.00	0.00	EV	0.00	5985.00	-2.00	5985.00	0.00	0.00	0.00	-11970.00	0.00	
1.00	0.00	DW	0.00	150.00	0.80	150.00	0.00	0.00	0.00	120.00	0.00	
1.00	0.00	EH	4430.80	0.00	4.00	0.00	0.00	4430.80	0.00	17723.21	0.00	
1.00	0.00	ES	373.12	0.00	6.00	0.00	0.00	373.12	0.00	2238.72	0.00	
		FR	0.00	0.00	9.50	0.00	0.00	555.00	0.00	5272.50	0.00	
1.00	0.00	LL	0.00	750.00	0.80	750.00	0.00	0.00	0.00	600.00	0.00	•Note: Friction forces
1.00	0.00	BR	110.00	0.00	12.00	0.00	0.00	110.00	0.00	1320.00	0.00	are already factored on
1.00	0.00	LS	450.46	0.00	6.00	0.00	0.00	450.46	0.00	2702.79	0.00	section Geometry and
1.00	0.00	WA 1	0.00	-1442.07	0.00	-1442.07	0.00	0.00	0.00	0.00	0.00	Loud Caroananon.
			(Servi	ce 1) Des	ign load:	17303.59	0.00	5919.39	0.00	19798.91	0.00	•Modifier, ηi
Sumn	Summary of Load Combinations:											$\eta_i = 1.00$
		STREN	IGTH I				EXTR	EME EVF	NT 1 (CA	ASE 1)		
Axial for	rce (kN)	Shear Fo	rce (kN)	Moment	(kN-m)	Axial for	ce (kN)	Shear Fo	rce (kN)	Moment	(kN-m)	
max	min	max	min	max	min	max	min	max	min	max	min	
21501.25	15919.24	9389.44	4427.18	33027.70	10515.17	22063.51	16757.09	11103.84	672.47	41723.77	-4870.50	
	EXTR	EME EVI	ENT 1 (CA	ASE 2)								
Axial for	rce (kN)	Shear Fo	rce (kN)	Moment	(kN-m)	Axial for	Axial force (kN) Shear Force (kN) Moment (kN-m)					
max	min	max	min	max	min	max	min	max	min	max	min	•The summary of load
22022.99	16727.92	9872.82	672.47	42183.17	-4850.66	17303.59	-	5919.39	-	19798.91	-	combinations show that the Extreme Event
that the Extreme Event 1 (Case 2) is the critical load case.										1 (Case 2) is the critical load case.		

7.7.3 Determine the governing design forces

Load Combination: EXTREME EVENT I (CASE 2)	•Note: Analysis shall be evaluated both
Axial force(min) = 16727.92 kN	can be critical in the
Axial force(max)= 22022.99 kN	pull-out or tension
Shear Force = 9872.82 kN	action.
Shear Force = 11103.84 kN	
Max. Moment = 42183.17 kN-m than Case 2.	

7.7.4 Verification of flexural resistance

etermine design moment for compression side (to desig	n bottom bars)		
Passive soil above footing	1.0	m	(estimated depth)
Weight of soil above toe	399	kN	
Weight of toe	1008	kN	
Number of piles at row 2	3		
Total reaction force from piles in row 2	21557.29	kN	(@ compression)
Distance of piles from face of column	0.5	m	
	0071 (4	kN-m	
Design moment for bottom bars etermine design moment for tension side (to design top	93/1.64 bars bars)	KI (III	
Design moment for bottom bars etermine design moment for tension side (to design top	93/1.64 bars bars)	KI (III	
Design moment for bottom bars etermine design moment for tension side (to design top Height of soil above heel	93/1.64 bars bars) 10	m	
Design moment for bottom bars etermine design moment for tension side (to design top Height of soil above heel Weight of soil above heel	93/1.64 bars bars) 10 5985	m kN	
Design moment for bottom bars etermine design moment for tension side (to design top Height of soil above heel Weight of soil above heel Weight of heel	9371.64 bars bars) 10 5985 1512	m kN kN	
Design moment for bottom bars etermine design moment for tension side (to design top Height of soil above heel Weight of soil above heel Weight of heel Number of piles at row 1	9371.64 bars bars) 10 5985 1512 3	m kN kN	
Design moment for bottom bars etermine design moment for tension side (to design top Height of soil above heel Weight of soil above heel Weight of heel Number of piles at row 1 Total reaction force from piles in row 1	9371.64 bars bars) 10 5985 1512 3 -2181.83	m kN kN kN	(@ tension)
Design moment for bottom bars etermine design moment for tension side (to design top Height of soil above heel Weight of soil above heel Weight of heel Number of piles at row 1 Total reaction force from piles in row 1 Distance of piles in row 1 at face of column	9371.64 bars bars) 10 5985 1512 3 -2181.83 1.5	m kN kN kN m	(@ tension)

			Commentary
Design for bottom bars			
Demand moment for bottom bars	9371.64	kN-m	
Concrete cover	30	mm	
Pile embedment	100	mm	
Diameter of reinforcing bar	28	mm $Ab = 613$	5.75
Diameter of shrinkage bar	20	mm	
Diameter of cross ties	16	mm	
Effective depth of concrete	1840	mm	
Length to be considered	10500	mm	
Overall thickness of component	2000	mm	
Minimum reinforcement			•DGCS 12.4.3.3
Flexural cracking variability factor, γ_{1}	1.6	*for all other concrete	
Ratio of specified min. to ult, tensile strength of steel. γ_3	0.67	*for A615. 414MPa stee	l
Modulus of rupture, f_{r}	3.334	mPa	
Section modulus, S_{α}	7E+09	mm ³	
Cracking moment, $M_{\rm cr}$			
$M = v_{\alpha}(v_{\alpha}, fr) Sc$	25015.68	kN-m	
$M_{cr} = 73(11)^{10} 50^{10}$ Mu min 1 33*Md =	12464.28	kN-m	
Design moment for bottom bars	12464.28	kN-m	
Steel ratio			
β_I Coefficient Criterion:	0.85		• DGCS 12.4.2.1
the factor β_1 shall be taken as 0.85 for concrete strengths not			
exceeding 28MPa. For concrete strength exceeding 28MPa,			
β_1 shall be reduced at a rate of 0.05 for each 7MPa strength			
excess of 28MPa but not less than 0.05			
For required steel ratio, ρ	$m_1 = 0.0573$	3	
	m ₂ = 0.084	mm ² /N	
	$R_n = 0.390$	MPa	
Computation for main reinforcement	ρ = 0.000	9	
Required steel area	18287.0	5 mm ²	· Companyation and sing
Required spacing	353.54	say: <mark>150</mark> mi	ⁿ is assumed to satisfy
Provided steel for bottom bars, A_s	43102.65	5 mm^2	other design
Compression fiber to neutral axis, c	84.21	mm	requirements.
Depth of compression block, a	71.58	mm	
Nominal moment capacity of section, M_n	32273.00	0 kN-m	

		Commentary
Resistance factor, ϕ	0.9 tension is controlled	
$0.75 < \phi = 0.65 + 0.15 (d_{eff}c - 1) < 0.9$ 3.78		
Ultimate moment capacity of section, ϕM_n	29045.70 kN-m OK!	
	c/d = 2.33	
		• DGCS 12.4.3.4
ontrol of cracking by distribution of reinforcement		
Applies to all reinforcements of concrete that exceeds 80% of the modul	us of rupture, except deck slabs.	
Ultimate moment from service loads, M_s	19798.91 kN-m	
80% of Modulus of rupture, f_r	2.201 mPa	
Tension in the cross section, fss	2.828 mPa	
Tension in the cross-section exceeds 80% of the modulus of rupture,	this provision has to be satisfied	
Working Stress Design (WSD) - Tra	insformed Section	
Method		
A A A A A A A A A A A A A A A A A A A		
	tts//n	
∢		
<u>1999</u>		
Extreme tension fiber to center of flexural reinforcement, d_c	144 mm	•by quardratic
Overall thickness of component, h	2000 mm	equation to determine
Compression fiber to the centroid of extreme tension steel, d_e	1856 mm	a = 10500
Neutral axis to extreme compression fiber, x	318.60 mm	b = 693245.568 c = -1.287E+09
Modulus elasticity of steel, E_s	200 GPa	C = -1.207E+09
Modulus elasticity of concrete, E_c	24.87 GPa	$x_1 = 318.60$
Noutian ratio, n Cracked section moment of inertia of section L_{m}	0.042 $0.3247E \pm 11 \text{ mm}^4$	$x_1 = -384.62$
Exposure factor Υ .	2.5247£+11 mm 1.00	
Exposure condition: Class 1	1.00	
Tensile stress in steel reinforcement at the service limit, f_s	249 MPa	
$\beta s = 1 + \frac{d_c}{(0.7 (h - dc))}$		
$c < 122000\mu$, $R f = 2dc$	1.11	
The spacing shall satisfy: $S \leq 123000 \gamma_e/p_s J_{ss} = 240$	156.69 mm	
Initial spacing: 150 mm SATISFIED!		
Using of 28mm Ø main bars spaced at 150mm O C is ad	eauate and safe	

Design for top bars			Commentary
	14510.05	1.57	
Demand moment for top bars	14518.25	kN-m	
Concrete cover	75	mm	
Diameter of reinforcing bar	28	mm $Ab = 615.752$	•concrete cover is
Diameter of shrinkage bar	20	mm	from top of footing.
Diameter of cross ties	16	mm	
Effective depth of concrete	1895	mm	
Length to be considered	10500	mm	
Overall thickness of component	2000	mm	
Minimum reinforcement			
Flexural cracking variability factor, Υ_1	1.6	*for all other concrete	•DGCS 12.4.3.3
Ratio of specified min. to ult. tensile strength of steel, γ_3	0.67	*for A615, 414MPa steel	
Modulus of rupture, F_r	3.334	mPa	
Section modulus. S.	70000000	0 mm ³	
Cracking moment. M			
$M = v_{\alpha}(v_{\alpha} \cdot fr) Sc$	25015.68	kN-m	
м _{cr} -73(r1)+) 50 Ми min 1 33*МА –	19309.27	kN_m	
Design moment for bottom bars	19309 27	l·N_m	
Staal matio	1/30/.21	KIN-111	
Steel ratio			
 β₁ Coefficient Criterion: the factor β₁ shall be taken as 0.85 for concrete strengths not exceeding 28MPa. For concrete strength exceeding 28MPa, β₁ shall be reduced at a rate of 0.05 for each 7MPa strength excess of 28MPa but not less than 0.65 	0.85		
For required steel ratio, ρ	$\begin{array}{rll} m_1 = & 0.0573 \\ m_2 = & 0.084 \\ R_n = & 0.569 \\ \rho = & 0.0014 \end{array}$	mm ² /N mPa	
Computation for main reinforcement			
Required steel area	27615.51	mm ²	
Required spacing	234.12	say: <mark>150</mark> mm	
Provided steel for breast wall, A_s	43102.65	mm ²	
Compression fiber to neutral axis, c	84.21	mm	
Depth of compression block, a	71.58	mm	
Nominal moment capacity of section, M_n	33256.81	kN-m	
Resistance factor. Ø	0.9	tension is controlled	
$0.75 \le \phi = 0.65 + 0.15 (d_{eff}/c - 1) \le 0.9$ 3.88	0.9		
Ultimate moment capacity of section, ϕM_n	29931.13 c/d =	kN-m OK! 1.55	

Control of cracking by distribution of reinforcement		Commentary • DGCS 12.4.3.4
Applies to all reinforcements of concrete that exceeds 80% of th	e modulus of rupture, except deck slabs.	
Ultimate moment from service loads, M_s	19798.91 kN-m	
80% of Modulus of rupture, f_r	2.201 mPa	
Tension in the cross section	2.828 mPa	
Tension in the cross-section exceeds 80% of the modulus of t	upture, this provision has to be satisfie	d
Working Stress Design (WSD) - Transform	ned Section Method	
b	f'c	
landal d 4 4		
la de la		
A _s nA _s nA _s		
	fs/n	
······································		
<u> </u>	· · · · · · · · · · · · · · · · · · ·	•by quardratic
Extreme tension fiber to center of flexural reinforcement, d_c	89 mm	equation to determine
Overall thickness of component, h	2000 mm	x: $a = 10500$
Compression fiber to the centroid of extreme tension steel, d_e	1911 mm	b = 693245.568
Neutral axis to extreme compression fiber, x	323.72 mm	c = -1.325E+09
Modulus elasticity of steel, E_s	200 GPa	$x_1 = 323.724154$
Modulus elasticity of concrete, E_c	24.87 GPa	$x_1 = -389.74754$
Modular ratio, n	8.042	
Cracked section moment of inertia of section, I_{NA}	9.9204E+11 mm ⁴	
Exposure factor, Υ_e	1.00	
Exposure condition: <u>Class 1</u>		
Tensile stress in steel reinforcement at the service limit, f_s	249 mPa	
$\beta s = 1 + d_c / (0.7 (h - dc))$	1.07	•for detailing purposes, it is
The spacing shall satisfy: $s \leq 123000\gamma_{e/}\beta_s f_{ss} - 2dc$	285.161 mm	recommended to adopt the conservative spacings of bars for top and bottom bars.
Initial spacing: 150 mm SATISFIED!		
Using of 28mm Ø main bars spaced at 150mm O.C. is adequa		

			Commentary
a. Nominal resistance for one-way action			• DGCS 12.5.3.2
-			
(1)→			
← (2)			
ritical for shear where	where there is		
here is compressive force	/ tensile force		
ppned d.	applied		
V ₂ V ₁			
	Drce		
	Ten		
For section 1 - 1			
$\frac{101 \text{ Section } 1 - 1}{\text{Detation for a of single nile in row } 1 F}$	20 דרד	ĿN	
Reaction force of single pile in fow 1, F_1	-121.20	KIN	
I otal force acting on tension side	-96/8.83	KN	
*Tension governs; critical for shear is at face of column			
For section 2 - 2			
Reaction force of single pile in row 2, F_2	7185.76	kN	
Total force acting on compression side	20150.29	kN	
*Compression governs: Critical for shear is at distance dy			
compression governs, critical for shear is at alsunce av			
Total force acting on section 2-2	3631.94	kN	• by inspection,
*Assuming $1/2$ demand shear force is effective			not critical because
Assuming 1/2 demand shear force is effective			shear action falls
YTTL' . 1 1 1 1 1 YY	0.670.00		outside the critical
Ultimate shear based on demand, V_{μ}	9678.83	kN Governs!!!	
Effective shear depth, d_{v}	1804.21	mm	
Taken as the distance measured perpendicular			
to the neutral axis, between the resultants of the			
tensile and compressive forces due to flexure;			
it need not to be taken to be less than the			
areater of $0.0de$ or $0.72h$			
greater of 0.74e or 0.72h			
			• DGCS 12.5.3.3.2
Factor indicating ability of diagonally cracked concrete to transmit te	nsion, 2.75		
Solution for β : <u>GENERAL PROCEDURE</u>			

7.7.5 Verification of shear resistance

				Commentary
Area of prestressing steel on tension side, A_{ps}	0	mm^2		
Area of non-prestressing steel, A _s	43102.65	mm^2		
Maximum aggregate size, a_g	20	mm		
Modulus of elasticity of prestressing tendons, f_{po}	0	mPa		
Factored axial force, N_u	-22022988	^S N		
*Positive for tension; Negative for compression				
Factored shear force, V_u	9872815	N		
Absolut value of the factored moment, M_u	4.2183E+10	N-mm		
*But not less than $ V_u - V_p d_v$				
Modulus of elasticity of prestressing steel, E_p	0	GPa		
Modulus of elasticity of steel, E_s	200	GPa	0.00258	
Net longitudinal tensile strain, e_s	0.001			
Crack spacing parameter, S_{xe}	300	mm		
Angle of inclination of diagonal compressive stresses, q	32.5	deg.		
Shear resistance from steel, V_s	0	kN		
Effective prestressing force, V_p	0	kN		
Shear resistance provided by concrete, V_c	22905.99	kN		
The nominal shear resistance, V_n	22905.98805	kN		
*shall be determined as the lesser of:				
$V_n = Vc + Vs + Vp$	22905.99	kN		
$V_n=0.25fc^{\prime\prime}b_vd_v+Vp$	132609.4706	kN		
Resistance factor for normal weight concrete,Ø	0.9			
Ultimate shear capacity of section, ∂V_n	20615.39	kN	OK!	
	c/d =	2.	13	
Section without shear reinforcement is adequate and safe				
b. Nominal shear resistance for two-way action	on			•DGCS 12.10.3.5
For two-way action for sections without transverse reinforcement, t V_n of the concrete shall be taken as:	he nominal shea	ır resistc	ance,	
$V_n = (0.17 + 0.33 / \beta_c) \sqrt{(fc') bodv} \le 0.33 \sqrt{(fc') bodv}$				
Effective shear depth of footing, d_y	1804.2	21 mn	n	
Ratio of long to short direction of pile, b_c	1			
Perimeter of the critical section, b_o	9438.0)1 mm	n	
Maximum reaction of single pile, V_u	7185.7	6 kN	[
Nominal shear capacity of concrete, V_n	33080.3	30 kN	[
a) $Vn = (0.17 + 0.33/\beta_c)\sqrt{(fc')} bodv$	50121.0	57 kN	[
b) $Vn = 0.33 \sqrt{(fc') bodv}$	33080.3	30 kN	[

Resistance factor for normal weight concrete, Ø	0.90			Commentary
Ultimate shear capacity of section,	29772.27	kN	OK!	
Pile cap is adequate for shear due to maximum reaction of pile				

7.7.6 Verification of shrinkage and temperature reinforcement

Reinforcement for shrinkage and temperature stresses shall be prov	•DGCS 12.7.8			
daily temperaturechanges and in structural mass concrete.				
		•		
Diameter of shrinkage and temperature bar		20	mm	
Assumed spacing, S	í.	200	mm	
Assumed shrinkage and temperature reinforcement, As	1	1.57	mm ² /mm	
Shrinkage and temperature reinforcement shall satisfy:				
a) $As \ge (0.75 bh)/(2 (b+h)f_y)$	1	1.57	mm ² /mm	
<i>b</i>) 0.233 ≤ <i>As</i> ≤1.27	1	1.27	mm ² /mm	
Spacing shall not exceed:				
a) 3.0 times the component thickness, or 450 mm				
b) 300 mm for walls and footings greater than 450 mm thick				
c) 300 mm for other components greather than 900 mm thick				
Final shrinkage and temperature reinforcement, A_s	1	270	mm ² per meter	
Final spacing to be used	í	247	mm	
	say:	200	mm	
Therefore use 20mm Ø for temperature and shrinkage bar spo	aced at 200m	ım 0.C		

7.7.7 Pile cap details

7.8 DESIGN OF PILES

7.8.1 Determine the pile springs and geometric properties

7.8.2 Determine the pile springs and geometric properties

a.	Horizontal pile spring constant (K _H) Note: The coefficient of subgrade reaction sh by using the modulus of deformation obtained tests by considering the influence of loading relevant factors: BSDS Table C.4.4.2-1 Modulus of Deformation Eq.	hall be o ed from width o and a	determin a variety of foundc	ed, in principle, v of surveys and utions and other	•JRA method determines the reaction and soil spring constant to model the foundation.
Modulus	of deformation E_0 to be obtained by means of the following testing methods		а		
Method	Definition				
Method A	A value equal to 0.5 of the modulus of deformation to be obtained from a repetitive curve of a plate bearing test using a rigid disc of 30cm. in diameter.	1	2		
Method B	Modulus of deformation to be measured in the bore hole.	4	8		
Method C	Modulus of deformation to be obtained by means of an unconfined or triaxial compression test of samples.	4	8		
Method D	Modulus of deformation to be estimated from $E_0 = 2,800$ *N using the N-value of the standard penetration test.	1	2	<<<< to be used	

The c	pefficient of horizontal subgrade reaction should be obtained by using RSDS Equation C 4.4.2.4 \cdot	Commentary
	$k_H = k_{HO} \left(\frac{B_H}{0.3} \right)^{-3/4}$	BSDS Eq. C.4.4.2-4
where :		
k _H	coefficient of horizontal subgrade reaction (kN/m ³)	
k _{HO}	coefficient of horizontal subgrade reaction coresponding to the value obtained by the plate bearing test using a rigid disc of diameter 0.3m. $k_{HO} = (a^*E_0/0.3) (kN/m^3)$.	
B _H	equivalent loading width of foundation to be obtained from BSDS Table C.4.4.2-2 (m)	
Ε ₀	modulus of deformation at the design location, measured or estimated by the procedures in Table C.4.4.2-1	
A_H	loading area of foundation perpendicular to the load direction (m ²)	
D	loading width of foundation perpendicular to the load direction (m)	
B _e	effective loading width of foundation perpendicular to the load direction (m)	
L _e	effective embedment depth of a foundation (m)	
1/b	ground depth relating to the horizontal resistance and equal to or less than the effective embedment depth (m)	
b	characteristic value of foundation	
EI	flexural stiffness of foundation (kN-m ²)	
	$K_{HP} = k_H A_{HP}$	BSDS Eq. C4.4.3-9
where :		
K_{HP}	horizontal spring constant of pile section corresponding to area A_{HP} (kN/m)	
A _{HP}	effective projected vertical area of the ground corresponding to pile spring K_{HP} (m2)	
When ana	lyzing the ground resistance of a pile foundation as a linear spring, the equivalent loading width $B_{\rm H}$	
should tal	ke a value of $(D/b)^{1/2}$.	
b. G	Geometric properties of piles	
	Select Pile Section :	
	Circular Section	
	Square Section	
	Select Pile Installation Method :	
	Driven Piles (Blow Method)	
	Driven Piles (Vibro-Hammer Method)	
	Cast-in-place RC Piles	•Note: Cast-in-place
	Bored Piles	common use in the
	☐Pre-Boring Piles ☐Steel Pile Soil Cement Piles	Philippines. The bored piles refers to Japan's method.

										Commentary
Input Pile Dimension : Diameter 1.20 m										
Input Number of Piles 6 piles									<mark>6</mark> piles	
Input	Pile Len	gth :						16.0	<mark>0</mark> m	•The initial pile length
Calcu	late Sect	ion Prop	erties :							is to founded into hard strata minimum of 1.m
	Cross	s-section	Area					1.13	$1 m^2$	depth.
	Perin	neter of I	Pile :					3.77	0 m	
	Pile N	Moment of	of Inertia	a :				0.10	$2 m^4$	
	Pile I	Flexural S	Stiffness	:				2.75E+0	⁶ kN-m ²	
Conci	rete Mate	erial Prop	erties :							
	Desig	gn Comp	ressive S	Strength	at 28 th da	ıy		2	⁸ N/mm ²	
	Unit	Density f	for Conc	rete				240	$\frac{0}{\text{kg/m}^3}$	
	Unit	weight fo	or Reinfo	orced Co	oncrete			2	4 kN/m^3	
	Youn	ig's Mod	ulus of E	Elasticity				2.70E+0	7 kN/m ²	
Reinf	orcemen	t Materia	l Proper	ties :				41	ر ۲	
	Minir	num Yie	ld Streng	gth				41	$\frac{1}{2}$ N/mm ²	
	Utim	ate Tens	lle Stren	gtn Naatiaitu				02 2.00E+0	$\frac{10}{10}$ N/mm ²	
	Youn	ig's Mod	uius of E	lasticity				2.00E+0	⁸ kN/m ²	
Metho	nd used t	o determ	ine Mod	hulus of 1	Deformat	ion ·		Method	D	BSDS Table C4.4.2-1
Specify Limit State used in determining subgrade coeff Ordinary Condition										
Coeff	icient to	be used	for estin	nating su	bgrade ra	ction :	01010		1	BSDS Table C4.4.2-1
	Unit	weight of	f water	0	8			1	$\frac{0}{1}$ kN/m ³	
		U								
		I			r	1		1		
Soil	Laver		Unit v	veight					Laver	
Laver	Thickness	N-Value	Ŷ	Υ'	aE_0	$(1/b_1)-d_i$	t _i	$aE_0 *t_i$	Depth	
Type			" _t	I					Doptii	
rype	m	Average			kN/m ²	m	m	kN/m	m	
Clay	2.00	12	18.0	8.0	33600	1.618	2.000	67200.00	2.00	
Sand	2.40	40	19.0	9.0	112000	-0.782	1.618	181161.45	4.40	
Clay	6.50	15	19.0	9.0	42000	-7.282	0.000	0.00	10.90	
Rock	4.40	25	20.0	10.0	70000	-11.682	0.000	0.00	15.30	
Rock 1.00 50 20.0 10.0 140000 -12.682 0.000 0 16.30										
										1

Embedment Ratio, L/D			13.33		
Note:					
For Piles $L/D < 10$, $L/D =$	10				
Proportional Coefficient, $\alpha = 0$.	031 (L/D) - 0.15		0.263		
Axial Spring Constant of Pile, <i>k</i>	K _V	502	2576.28 kN/	m	
d. Radial pile spring	constant (K1, K2, J	K3, K4)			
The radial spring constants K_1 to K	$_4$ of a pile are:				
K_1, K_3 radial force and b unit displacemen	ending moment (kN-m/m) t in the radial direction whi	to be applied on a ile keeping it from	pile head w rotating (kN	hen displac I/m)	ing a
K_2 , K_4 radial force and b head by a unit rot direction (kN/rad	ending moment (kN-m/radiation in the radial direction	d) to be applied on while keeping it fr	a pile head om moving	when rotat in a radial	ing the
NOTE: If the coefficient of horizontal embedded depth of a pile is sufficiently	subgrade reaction is consta v long, the constants can be	ant irrespective of e computed from I	the depths a BSDS Table	nd if the C4.4.3-2.	
Specify Limit State used in design :	During Ea	rthquake			
Coefficient to be used, a :		2			
Characteristic value of foundation, b' :		0.329 m ⁻¹			
Pile length above design ground surface	e, h :	0 m			
$b'*L_e$:		5.26 Piles wit	h semi-infini	te length	
Select restrictive condition of pile hea					
Kigia Frame of Pile Head		REDE Table C	127 Unres	hi Chang TL	000
Initiged Frame of Pile Head		Dous Table C4	н.н.э-2 - пауаз	Hinged	leory
Radial Spring Constants of Piles K.	390535 81 kN/m	1171609.42	390535.81	195267 90	195267.90
Radial Spring Constants of Piles K.	593995.91 kN-m/m	1781990.78	593995 91	0.00	0.00
Radial Spring Constants of Piles K ₂ .	593995.91 kN/rad	1781990.78	593995.91	0.00	0.00
Radial Spring Constants of Piles, K ₄ :	1806908.04 kN-m/rad	1806908.04	1806908.04	0.00	0.00
		L			

7.8.3 Determine the pile displacement and reaction force

Pile reactions and displacements shall be evaluated considering the	
properties of the pile structure and the ground. In the displacement method,	
the coordinate is formed with the origin set at an arbitrary point O of the	
foundation. The origin O may be selected from arbitrary points, but it is	
recommended to coincide it with the centroid of the pile group.	

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

$A_{xx}^{*}a'_{x} + A_{xy}^{*}a'_{y} + A_{xx}^{*}a' = H_{x}$ $A_{xx}^{*}a'_{x} + A_{xy}^{*}a'_{y} + A_{xx}^{*}a' = V_{x}$ V_{x} vertical lask acting at the bottom of p dy vertical displacement from origin 0, m V_{x} vertical lask acting at the bottom of p dy vertical displacement form origin 0, m V_{x} vertical lask acting at the bottom of p dy vertical displacement form origin 0, m V_{x} vertical displacements (dx, dy, and a) below are derived by solving BSDS $d_{x} = \frac{H_{x}^{*}A_{xx}}{A_{xx}^{*}A_{xx} - A_{xx}^{*}A_{xx}}$ $d_{y} = \frac{V_{y}}{A_{yy}}$ $a = \frac{-H_{y}^{*}A_{xx} + M_{y}^{*}A_{xx}}{A_{xx}^{*}A_{xx} - A_{xx}^{*}A_{xx}}$ $d_{y} = \frac{V_{y}}{A_{yy}}$ $a = \frac{-H_{y}^{*}A_{xx} + M_{y}^{*}A_{xx}}{A_{xx}^{*}A_{xx} - A_{xx}^{*}A_{xx}}$ $d_{y} = \frac{V_{y}}{A_{xy}}$ $a = \frac{-H_{y}^{*}A_{xx} + M_{y}^{*}A_{xx}}{A_{xx}^{*}A_{xx} - A_{xx}^{*}A_{xx}}$ $d_{y} = \frac{V_{y}}{A_{xy}}$ $a = \frac{-H_{y}^{*}A_{xx} + M_{y}^{*}A_{xx}}{A_{xx}^{*}A_{xx} + A_{xx}^{*}A_{xx}}$ $d_{y} = \frac{V_{y}}{A_{xy}}$ $a = \frac{-H_{y}^{*}A_{xx} + M_{y}^{*}A_{xx}}{A_{xx}^{*}A_{xx}^{*}A_{xx}^{*}A_{xx}^{*}A_{xx}^{*}A_{xx}}$ $d_{y} = \frac{1}{3} \frac{1}{2} \frac{1}{0} \frac{1}{107729} \frac{1171607}{1171607} \frac{1781988}{-1781988} \frac{-2E_{106}}{11451640} \frac{11}{0} \frac{1}{0} \frac{1}{1} $						_						Commentary
$A_{xx}^{*}d_{x} + A_{xy}^{*}d_{y} + A_{yy}^{*}a = V_{o}$ $A_{xx}^{*}d_{x} + A_{xy}^{*}d_{y} + A_{yu}^{*}a = M_{o}$ where: $H_{a} \text{lateral loads acting at the bottom of plidx} \\ W_{e} \text{vertical loads acting at the bottom of plidx} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \text{moment} (\text{external force) at the origin 0 a} \\ W_{a} \frac{W_{a}^{*}A_{aa} - A_{aa}^{*}A_{aa}}{A_{aa} - A_{aa}^{*}A_{aa}} - A_{aa}^{*}A_{aa}} \\ W_{a} \frac{W_{a}^{*}A_{aa} - A_{aa}^{*}A_{aa}}{A_{aa} - A_{aa}^{*}A_{aa}} - A_{aa}^{*}A_{aa}} \\ W_{a} \frac{W_{a}^{*}A_{aa} - A_{aa}^{*}A_{aa}}{A_{aa} - A_{aa}^{*}A_{aa}} - A_{aa}^{*}A_{aa}} \\ W_{a} \frac{W_{b}^{*}A_{a}}{A_{ax}^{*}A_{aa}^{*} - A_{aa}^{*}A_{aa}} \\ \frac{W_{b}^{*}A_{ax}}{A_{ax}^{*}A_{aa}^{*} - A_{aa}^{*}A_{aa}} - A_{aa}^{*}A_{aa}} \\ \frac{W_{b}^{*}A_{ax}}{A_{ax}^{*}A_{aa}^{*} - A_{aa}^{*}A_{aa}} - A_{aa}^{*}A_{aa}} \\ \frac{W_{b}^{*}A_{ax}}{A_{ax}^{*}A_{aa}^{*} - A_{aa}^{*}A_{aa}} \\ \frac{W_{b}^{*}A_{ax}}{A_{ax}^{*}A_{aa}^{*} - A_{aa}^{*}A_{aa}} \\ \frac{W_{b}^{*}A_{b}^{*}$	$A_{xx}*d$	$x + A_{xy}^*$	$d_y + A_z$	$_{xa}*a = b$	H_o]						
$A_{ax} * d_{x} + A_{ay} * d_{y} + A_{au} * a = M_{a}$ where: $M_{a} = \text{tatral loads acting at the bottom of play werical displacement from origin 0, m verical displacement form origin 0, m verical displacements (dx, dy, and a) below are derived by solving BSDS d_x = -\frac{H_a * A_{au} - M_a * A_{au}}{A_{xx} * A_{au} - A_{xu} * A_{au}} = \frac{-H_a * A_{au} - M_a * A_{au}}{A_{xx} * A_{au} - A_{xu} * A_{au}} = \frac{-H_a * A_{au} + M_a * A_{xu}}{A_{xx} * A_{au} - A_{xu} * A_{au}} = \frac{-H_a * A_{au} + M_a * A_{xu}}{A_{xx} * A_{au} - A_{xu} * A_{au}} = \frac{-H_a * A_{au} + M_a * A_{xu}}{A_{xu} * A_{xu} * A_{xu} + A_{xu} + A_{au}} = \frac{-H_a * A_{au} + M_a * A_{xu}}{A_{xu} * A_{xu} * A_{xu} + A_{xu} + A_{au}} = \frac{-H_a * A_{au} + M_a * A_{xu}}{A_{xu} * A_{xu} * A_{xu} + A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu} * A_{xu}} = \frac{-H_a * A_{au} + A_{au} * A_{au}}{A_{xu} * A_{xu}} = \frac{-H_a * A_{xu} + A_{xu} * A_{xu}}{A_{xu}} = \frac{-H_a * A_{xu} + A_{xu} * A_{xu}}{A_{xu}} = \frac{-H_a * A_{xu} + A_{xu}}{A_{xu}} = \frac{-H_a * A_{xu} + A_{xu}}{A_{xu}} = \frac{-H_a * A_{xu} + A_{xu}}{A_{xu}} = -H_a * A_{$	$A_{yx}*d$	$x + A_{yy}^*$	$d_y + A_y$	$_{ya}*a = 1$	Vo	}						
where: $H_a = \operatorname{der} (-H_a) = \operatorname{der} (-y) $	A*d		$^{k}d_{m} + A$	*a =	M.							
where: H_{a} lateral loads acting at the bottom of pikk h_{a} wretrical loads acting at the bottom of p dy writical displacement from origin 0, m vertical displacement from origin 0, m vertical displacement from origin 0, rad The displacements (dx, dy, and a) below are derived by solving BSDS $d_{z} = \frac{H_{a}*A_{aa} - M_{a}*A_{aa}}{A_{xx}*A_{aax} - A_{ax}*A_{ax}} = \int_{A_{xx}} \frac{1}{A_{xx}} \frac{1}$	nax a	x + 11ay	<i>ay</i> 111	$aa \alpha - 1$	11 0	2						
$H_{a} = \ker a loads acting at the bottom of pidx kerral displacement from origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy vertical displacement form origin 0, m V_{a} = \operatorname{vertical loads acting at the bottom of p dy dy dx x Axa Axa Aaa Cas(q) sin(q), tas vertical displacement form origin 0, m V_{a} = \operatorname{vertical load for Displacement} tas vertical displacement form origin 0, m V_{a} = \operatorname{vertical load case} ty = \operatorname{vertical load case} ty = \operatorname{vertical loads acting based on the bottom of p dy dy dx dy dx } tas vertical displacement form origin 0, m V_{a} = \operatorname{vertical load case} ty = \operatorname{vertical load case} ty = \operatorname{vertical load case} ty = \operatorname{vertical load displacement} ty = \operatorname{vertical load load displacement} ty = \operatorname{vertical load case} ty = \operatorname{vertical load displacement} ty = \operatorname{vertical load displacement} ty = \operatorname{vertical load displacement} ty = vertical load displac$	where	:										
$V_{u} \text{vertical loads acting at the bottom of p dy} \text{vertical displacement form origin 0, m} \\ \textbf{m}, \qquad \text{moment (external force) at the origin 0 a} \qquad \text{rotational angle of the footing at the origin 0, rad} \\ \text{The displacements (dx, dy, and a) below are derived by solving BSDS} \\ d_{x} = \frac{H_{o} * A_{aa} - M_{o} * A_{aa}}{A_{xx} * A_{aa} - A_{ua} * A_{ax}} \\ d_{y} = \frac{V_{o}}{A_{yy}} \\ a = \frac{-H_{o} * A_{aa} - A_{ua} * A_{ax}}{A_{xx} * A_{aa} - A_{ua} * A_{ax}} \\ \hline \textbf{BSDS C5.4.3.7-2 COEFFICIENTS FOR DISPLACEMENT CALCULATION} \\ \hline \textbf{Row} \boxed{\text{No. of}} x_{i} q_{i} Ayy Axx Axa Aax Aaa \cos(q_{i}) \sin(q_{i}) \\ \hline 1 3 2 0 1507729 1171607 1781988 2E+06 11451640 1 0 \\ \hline 2 3 2 0 1507729 1171607 1781988 2E+06 11451640 1 0 \\ \hline 1 0 1 0 1 0 \\ \hline 1 0 1 0 1 0 \\ \hline 1 0 0 0 0 0 0 0 0 0 $	H_o	lateral loa	ads acting	g at the b	ottom of p	oikdx la	teral displa	cement f	rom origin (O, m		
$M_{a} \text{ moment} (external force) at the origin (a rotational angle of the footing at the origin O, rad The displacements (dx, dy, and a) below are derived by solving BSDS d_{x} = -\frac{H_{a}*A_{aac} - M_{a}*A_{xac}}{A_{xx}*A_{aac} - A_{ua}*A_{aac}} d_{y} = \frac{V_{a}}{A_{yy}} a = -\frac{H_{a}*A_{aac} + M_{a}*A_{xac}}{A_{xx}*A_{aac} - A_{ua}*A_{aac}} \frac{V_{a}}{A_{xx}*A_{aac} - A_{ua}*A_{aac}} \frac{V_{a}}{A_{xx}} + A_{aa} + A$	V_{a}	vertical le	oads acti	ng at the	bottom of	pdy v	ertical disp	lacement	form origin	0, m		
The displacements (dx, dy, and a) below are derived by solving BSDS $d_x = \frac{H_0^* A_{aac} - M_0^* A_{xa}}{A_{xx}^* A_{aac} - A_{aa}^* A_{ax}}$ $d_y = \frac{V_o}{A_{yy}}$ $a = \frac{-H_o^* A_{ax} + M_o^* A_{xx}}{A_{xx}^* A_{aac} - A_{xa}^* A_{ax}}$ $\frac{V_o}{A_{yy}}$ $a = \frac{-H_o^* A_{ax} + M_o^* A_{xx}}{A_{xx}^* A_{aac} - A_{xa}^* A_{ax}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{yy}}$ $a = \frac{-H_o^* A_{ax} + M_o^* A_{xx}}{A_{xx}^* A_{aac} - A_{xa}^* A_{ax}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{yy}}$ $\frac{V_o}{A_{xx}^* A_{aac} - A_{xa}^* A_{ax}}$ $\frac{V_o}{A_{xx}^* A_{xa} - A_{xa}^* A_{xa}}$ $\frac{V_o}{A_{xx}^* A_{xa} - A_{xa} - A_{xa} - A_{xa} - A_{xa}^* A_{xa} - A_{$	М _а	moment	(external	force) at	the origin	a ro	otational an	gle of the	e footing at	the origin (). rad	
The displacements (dx, dy, and a) below are derived by solving BSDS $d_x = -\frac{H_a * A_{aa} - M_a * A_{xa}}{A_{xx} * A_{aa} - A_{xa} * A_{ax}}$ $d_y = -\frac{V_a}{A_{yy}}$ $a = -\frac{-H_a * A_{aa} + M_a * A_{xx}}{A_{xx} * A_{aa} - A_{xa} * A_{ax}}$ $\frac{1}{3} = \frac{-H_a * A_{aa} + M_a * A_{xx}}{A_{xx} * A_{aa} - A_{xa} * A_{ax}}$ $\frac{1}{3} = 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 1 0}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 1171607 - 1781988 - 2E+06 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 - 17607 - 1781988 - 2E+06 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 - 17607 - 1781988 - 2E+06 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 - 17607 - 1781988 - 2E+06 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 2 0 1507729 - 17607 - 1781988 - 2E+06 - 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 2 0 - 1507729 - 17607 - 1781988 - 2E+06 - 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 - 2 - 1607729 - 17607 - 178198 - 2E+06 - 11451640 - 1}{1 0}$ $\frac{1}{2} = 3 - 2 - 1607 -$	U			,	0			0	0	0	, ,	
$d_{x} = \frac{H_{a} * A_{aa} - M_{a} * A_{aa}}{A_{xx} * A_{aa} - A_{xa} * A_{ax}}$ $d_{y} = \frac{V_{a}}{A_{yy}}$ $a = \frac{-H_{a} * A_{aa} + M_{a} * A_{xx}}{A_{xx} * A_{aa} - A_{xa} * A_{ax}}$ $\frac{V_{a}}{A_{xx} * A_{aa} - A_{xa} * A_{aa}}$ $\frac{V_{a}}{A_{xx} * A_{aa} - A_{xa} * A_{aa}}$ $\frac{V_{a}}{A_{xx} * A_{aa} - A_{aa} * A_{aa}}$ $\frac{V_{a}}{A_{aa}}$ $\frac{V_{a}}{A_{xx} * A_{aa} - A_{aa} * A_{aa}} + A_{aa} * A_{$	The dis	splacem	ents (d	x, dy, a	nd a) be	low are	derived	by solvi	ing BSDS	5		
$d_x = -\frac{H_0 * A_{aa} - M_0 * A_{xa}}{A_{xx} * A_{aa} - A_{xa} * A_{aax}}$ $d_y = -\frac{V_o}{A_{yy}}$ $a = -\frac{H_0 * A_{ax} + M_o * A_{xx}}{A_{xx} * A_{aa} - A_{xa} * A_{ax}}$ $BSDS C5.4.3.7 \cdot 2 \text{ COEFFICIENTS FOR DISPLACEMENT CALCULATION}$ $\overline{Row \ No. of \ X_i \ q_i \ Ayy \ Axx \ Axa \ Aax \ Aaa \ cos(q_i) \ sin(q_i)$ $1 \ 3 \ 2 \ 0 \ 1507729 \ 1171607 \ .7181988 \ .2E+06 \ 11451640 \ 1 \ 0$ $2 \ 3 \ 2 \ 0 \ 1507729 \ 1171607 \ .7181988 \ .2E+06 \ 11451640 \ 1 \ 0$ $1 \ 0$ $a \ Calculation for Displacement$ $\overline{Logitudinal Displacement} \ Displacement \ Displacement}$ $Location \ Lateral \ Vertical \ Rotational \ d_a \ d$					_				U			
$\begin{array}{rcl} dx &= & A_{xx}*A_{aa} - A_{xa}*A_{ax} \\ dy &= & \frac{V_o}{A_{yy}} \\ a &= & \frac{-H_o*A_{ax} + M_o*A_{xx}}{A_{xx}*A_{aa} - A_{xa}*A_{ax}} \end{array}$ $\begin{array}{rcl} \hline \textbf{BSDS C5.4.3.7-2 COEFFICIENIS FOR DISPLACEMENT CALCULATION} \\ \hline \textbf{Row} & \hline \textbf{No. of} \\ \hline \textbf{No. of} \\$	d –	Н	o*A _{aa} -	$M_o *A_{xa}$	<u> </u>							
$d_{y} = \frac{V_{o}}{A_{yy}}$ $a = \frac{-H_{o}^{*}A_{ax} + M_{o}^{*}A_{ax}}{A_{xx}^{*}A_{aa} - A_{xx}^{*}A_{ax}}$ BSDS C5.4.3.7-2 COEFFICIENTS FOR DISPLACEMENT CALCULATION $\boxed{\text{Row } Piles} x_{i} q_{i} Ayy Axx Axa Aax Aaa \cos(q_{i}) \sin(q_{i})$ $\boxed{1 3 2 0 1507729 1171607 1781988 -2E+06 11451640 1 0}{2 3 2 0 1507729 1171607 1781988 -2E+06 11451640 1 0}{2 1 0 1 0}$ $\boxed{1 0 1 0 1 0}{1 0 1 0}$ $\boxed{1 0 0 1 0}{1 0 1 0}$ $\boxed{1 0 0 0 0 0.0158 2343215 -3563975 22903279 U}$ B. Calculation for Displacement For Governing Load Case Extreme Event 1 - case 2 $\boxed{\frac{1 0 0 0 0 0.0158 0.0034}{\frac{1 0 0 0 0 0 0 0}{1 0 0 0 0 0}}$	$u_x =$	A_{λ}	x^*A_{aa} -	$A_{xa}*A_a$	x							
$d_{y} = \frac{V_{o}}{A_{yy}}$ $a = \frac{-H_{o}^{*}A_{ax} + M_{o}^{*}A_{ax}}{A_{xx}^{*}A_{aa} - A_{xa}^{*}A_{ax}}$ BSDS C5.4.3.7-2 COEFFICIENTS FOR DISPLACEMENT CALCULATION $\boxed{Row No. of x_{i} q_{i} Ayy Axx Axa Aax Aaa cos(q_{i}) sin(q_{i})$ $\boxed{1 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0$ $\boxed{2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0$ $\boxed{2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0$ $\boxed{1 0 1 0 1 0}$ $\boxed{1 0 1 0 1 0}$ $\boxed{2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0$ $\boxed{1 0 1 0 1 0}$ $1 0 0 0 0 0 0 0 0 0 $			• •									
$a = \frac{-H_a * A_{ax} + M_a * A_{xx}}{A_{xx} * A_{aa} - A_{xa} * A_{ax}}$ $BSDS C5.4.3.7.2 COEFFICIENTS FOR DISPLACEMENT CALCULATION$ $Row No. of X_i q_i Ayy Axx Axa Aax Aax Aaa cos(q_i) sin(q_i)$ $1 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0$ $2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0$ $2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0$ $1 0$	$d_v =$		<i>V</i> ₀		- (\succ						
$a = \frac{-H_0 * A_{ax} + M_0 * A_{xx}}{A_{xx} * A_{aa} - A_{xa} * A_{ax}}$ SSDS C5.4.3.7-2 COEFFICIENTS FOR DISPLACEMENT CALCULATION Row $\overline{N_0}$ of x_i q_i Ayy Axx Axa Aaa Aaa $cos(q_i)$ $sin(q_i)$ 1 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 1 0 1 0 1 0 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 1 0 1 0 1 0 1 0 2 3 2 0 1507729 1371607 -1781988 -2E+06 11451640 1 0 1 0 1 0 1 0 1 0 1 0 2 Sum = 3015458 2343215 -3563975 -3563975 22903279 - A cond Case Extreme Event I - case 2 Displacement Location Internal Mathematication 0 0 0 0 0 Di	5		A_{yy}									
$a = \frac{1}{A_{xx} * A_{au} - A_{xu} * A_{ax}}$ BSDS C5.4.3.7-2 COEFFICIENTS FOR DISPLACEMENT CALCULATION Row No. of xi qi Ayy Axx Axa Aaa cos(q) sin(q) <		-H	$a^*A_{ax} +$	$M_o *A_s$	xx							
BSDS C5.4.3.7-2 COEFFICIENTS FOR DISPLACEMENT CALCULATION Row $No. of$ x_i q_i Ayy Axx Axa Aaa $Cos(q_i)$ $sin(q_i)$ 1 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 1 0 1 0 1 0 1 0 1 0 2 Sum = 3015458 2343215 -3563975 2363975 22903279 - - Location for Displacement Extreme Event 1 - case	<i>a</i> =	A,		A _{xa} *A _a	<u>r</u>]							
BSDS C5.4.3.7-2 COEFFICIENIS FOR DISPLACEMENT CALCULATIONRow N_0 . of Piles x_i q_i Ayy Axx Axa Aaa Aaa $Cos(q_i)$ $sin(q_i)$ 132015077291171607-1781988-2E+061145164010232015077291171607-1781988-2E+061145164010232015077291171607-1781988-2E+061145164010232015077291171607-1781988-2E+061145164010232015077291171607-1781988-2E+06114516401044444444444444444444445444444444444444444444444444444444445243215-3563975-356397522903279-Longitudinal DisplacementFor Governing Load Case1010101010100010 <td></td> <td> ,</td> <td>.ruu</td> <td><i>xu</i>u</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		,	.ruu	<i>xu</i> u								
BSDS C5.4.3.7-2 COEFFICIENTS FOR DISPLACEMENT CALCULATIONRowNo. of Piles x_i q_i AyyAxxAxaAaaAaacos(q_i)sin(q_i)132015077291171607-1781988-2E+061145164010232015077291171607-1781988-2E+061145164010232015077291171607-1781988-2E+06114516401010101010232015077291171607-1781988-2E+0611451640101010101010101010102311010102311010101010101020Sum =30154582343215-356397522903279-Location for DisplacementFor Governing Load CaseExtreme Event I - case 2DisplacementDisplacementLocationIndexRotational d_x d_x d_x 0 m m 0 m m 1 0 1 0 1												
Row No. of Piles x_i q_i Ayy Axx Axa Aaa Aaa cos(q_i) sin(q_i) 1 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 1 0 1 0 1 0 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 2 1 1 1 1 0 1 0 1 0 1 1 1 1 0	BSI	DS C5.4.3	.7-2 CO	EFFICIE	NTS FOR	DISPLAC	EMENT CA	ALCULA	TION			
KowPiles λ_i q_i Ayy AAA AAA AAA AAA AAA AAA $COS(q_i)$ $Sui(q_i)$ 132015077291171607-1781988-2E+061145164010232015077291171607-1781988-2E+061145164010232015077291171607-1781988-2E+06114516401010101010232015077291171607-1781988-2E+0611451640102Sum =30154582343215-356397522903279 \cdot Longitudinal DisplacementFor Governing Load CaseExtreme Event 1 - case 2DisplacementLocationIateral Vertical Rotational00000550.0034	Dow	No. of			4	A 1014	Ana	Aan	Aaa	aas(a)	sin(a)	
I 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 1 0 1 0 1 0 1 0 - - - - 1 0 1 0 - - - - - 1 0 0 - - - - - 1 0 0 - - - - - - 1 0 0 - - - - - - - 1 0 0 - Sum = 3015458 2343215 -3563975 -3563975 22903279 - - Displacement - - - - -	KOW	Piles	λi	q_i	Ауу	Лл	Али	πил	Аш	$\cos(q_i)$	sm(q _i)	
1 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 2 3 2 0 1507729 1171607 -1781988 -2E+06 11451640 1 0 - - - - 1 0 1 0 - - - - 1 0 1 0 - - - - 1 0 1 0 - - - - 1 0 1 0 - - - - - 1 0 1 0 - - - - - - 1 0												
232015077291171607-1781988-2E+061145164010Image: constraint of the system	1	3	2	0	1507729	1171607	-1781988	-2E+06	11451640	1	0	
Image: constraint of the systemImage: constra	2	3	2	0	1507729	1171607	-1781988	-2E+06	11451640	1	0	
Image: constraint of the systemImage: constraint of the system										1	0	
Image: constraint of the systemImage: constraint of the systemImage: constraint of the systemSum = 30154582343215-356397522903279Image: constraint of the systemImage: constraint of the s										1	0	
Longitudinal Displacement For Governing Load CaseI0Extreme Event 1 - case 2 0 0 Displacement Location 0 0 Lorgitudinal Displacement For Governing Load Case 0 Extreme Event 1 - case 2 0 0 Displacement Location 0 0 Location 0 <										<u> </u>	0	
Sum = 3015458 2343215 -3563975 22903279 a. Calculation for Displacement:Longitudinal DisplacementFor Governing Load CaseExtreme Event I - case 2DisplacementLocationDisplacementLocationLateralVerticalRotational d_x d_y a Origin 0mmrad0.00990.00550.0034										1	0	
a. Calculation for Displacement: Longitudinal Displacement For Governing Load Case Extreme Event 1 - case 2 Displacement Location Lateral Vertical Rotational d_x d_y a Origin 0 m m rad 0.0099 0.0055 0.0034				Sum =	3015458	2343215	-3563975	-3563975	22903279			
Longitudinal DisplacementFor Governing Load CaseExtreme Event 1 - case 2DisplacementLocationLateralVerticalRotational d_x d_y a Origin 0mmrad0.00990.00550.0034	<u></u>	Calc	Ilation	for Di	snlacen	nent•						
Longitudinal DisplacementFor Governing Load CaseExtreme Event I - case 2DisplacementLocationLateralVerticalRotational d_x d_y a Origin 0mmrad0.00990.00550.0034	a.	Jailt			Place							
For Governing Load CaseExtreme Event I - case 2DisplacementLocationLateralVerticalRotational d_x d_y a Origin 0mmrad0.00990.00550.0034	Т	Longitudi	inal Dist	placeme	nt							
Extreme Event I - case 2DisplacementLocationLateralVerticalRotational d_x d_y a Origin 0mmrad0.00990.00550.0034		For Gov	erning I	oad Case	<u> </u>			8				
Displacement Location Lateral Vertical Rotational d_x d_y a Origin 0 m m rad 0.0099 0.0055 0.0034		Euton	Europe I		-				δx			
DisplacementLocationLateralVerticalRotational d_x d_y a Origin 0mmrad0.00990.00550.0034		Extreme		- case 2					δ _y			
LocationLateralVerticalRotational d_x d_y a Origin Ommrad0.00990.00550.0034			Displa	cement			α(\backslash	↑ ↑		and O	
dx dy a Origin O m m rad 0.0099 0.0055 0.0034	Locat	ion Late	eral Ver	rtical Ro	tational					- Displa	iced U	
Origin O m mad Deformed Shape 0.0099 0.0055 0.0034		d_{j}	χ (d_y	a							
	Origi	n O 0.00	1)99 0.(m 0055 0.	rad .0034			Defo	rmed Sha	ре		
	L	1										

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

											Commentary
b. (Calcul By usin of the al on each	ation o g the di bove ca pile he	f Reactisplaced culatic ad can	tion: ments a ons, the be obta	at the fo pile axi ained us	oting or al force, ing the f	igin O o radial fo ollowing	btained orce, an g equati	from th d mome: ons:	e results nt acting	
$P_{Ni} = K$	$V_V * d_{yi}'$										
$P_{Hi} = K$	$1 * d_{xi}'$ -	K_2^*a	ł								BSDS Eq. C5.4.3.7-4
$M_{ti} = -H$	$K_3 * d_{xi}'$	$+ K_4 * a$									
$d_{xi}' = d_x$	*cosqi	$-(d_y + (d_y +$	ax_i)*sin	nq_i							BSDS Eq. C5.4.3.7-5
$a_{yi} = a_x$ where:	ε*sinq _i	$+ (a_y +$	<i>ax_i)*cc</i>	psq_i							
d_{xi}'	radia	l displac	cement	at the	i-th pile	head, m	l				
d_{yi}' x_i	axial	displace ordinate	ement a								
	vertic	al axis	angle f	rom th	e i-th pil	e axis fo	or batter	ed pile,			
q_i	degre	e forma at	f that t	h mila	1-NI						
P_{Ni} P_{Hi}	axiai radia	force of force of	f the 1-t of the i-	n pile, th pile	kn . kN						
M_{ti}	mom	ent as e	xternal	force a	acting or	n the i-th	n pile hea	ad, kN-	m		
		Pile 1	Reaction	in Long	itudinal Di	irection					
		Number	xi	q _i	Axial	Radial	Moment			1	
	Column	of Piles		_	P _{Ni}	P_{Hi}	M_{ti}	$\cos(\boldsymbol{q}_i)$	$sin(q_i)$		
			m	deg.	kN	kN	kN-m			600 2250	
	1	3	-2.00	0	-608.33	1850.64	237.90	1	0	6184.3	•By comparison of the
	2	3	2.00	0	6184.30	1850.64	237.90	1	0	2787.987	axial forces to the
								1	0		results from pile group
								1	0	_	design, it appears the
								1	0	_	design of pile cap is
								1	0	4	practically
		6						1	0	-	need to redesign of the
		•								1	pile cap.
Maximu	m Axial F	Force for C	Capacity v	verific atio	n, P _{Ni-max}		6184.30	kN			
Minimur	n Axial F	orce for C	apacity v	erification	n, <i>P</i> _{Ni-min}		-608.33	kN			

	PILE E	MBEDDI	ED IN TH	E GROUN	\mathbf{D} (h = 0)		
Danth	Rigid Pil	e Head Co	nnection	Hinged	Pile Head C	onnection	
Depth	Deflectior	Moment	Shear	Deflection	Moment	Shear	
m	mm	kN-m	kN	mm	kN-m	kN	
0.00	9.88	-237.90	-1850 64	9.48	0.00	-1850.6	
1.00	6.64	-1525.65	-79/ 39	6.46	-1308.29	-830.7	
2.00	3.92	-1955 55	-123.48	3.80	-1782 64	-173.0	
3.00	1.91	-1874.04	2/13 37	1.05	-1751.07	19/ 71	
4 00	0.57	-1540.23	395 59	0.64	-1462.28	354.96	
5.00	-0.22	-1127.63	A12 91	-0.13	-1085.12	382.76	
6.00	0.50	738 30	357.65	0.52	720.87	337.62	
7.00	-0.39	421.92	272 27	-0.52	-120.87	261.70	
7.00	-0.69	-421.82	2/3.3/	-0.65	-419.97	201./0	
8.00	-0.63	-192.16	18/.10	-0.60	-198./1	181.04	
9.00	-0.51	-43.26	113.38	-0.48	-53.15	50.25	
10.00	-0.36	40.63	57.50	-0.35	30.54	58.35	
11.00	-0.23	77.77	19.61	-0.23	69.16	21.53	
12.00	-0.13	84.92	-3.08	-0.13	78.41	-0.90	
13.00	-0.05	75.41	-14.36	-0.06	71.00	-12.39	
14.00	-0.01	58.75	-17.97	-0.01	56.12	-16.41	
15.00	0.02	40.98	-17.04	0.01	39.67	-15.94	
16.00	0.03	25.39	-13.91	0.03	24.98	-13.22	
17.00	0.03	13.37	-10.12	0.03	13.48	-9.75	
18.00	0.03	5.05	-6.59	0.02	5.42	-6.44	
19.00	0.02	-0.04	-3.73	0.02	0.41	-3.72	
20.00	0.01	-2.67	-1.67	0.01	-2.26	-1.73	
21.00	0.01	-3.62	-0.34	0.01	-3.29	-0.43	
22.00	0.00	-3.55	0.40	0.00	-3.31	0.31	
23.00	0.00	-2.96	0.72	0.00	-2.80	0.64	
24.00	0.00	-2.19	0.78	0.00	-2.11	0.72	
25.00	0.00	-1.46	0.68	0.00	-1.42	0.64	
26.00	0.00	-0.85	0.53	0.00	-0.84	0.51	
27.00	0.00	-0.40	0.37	0.00	-0.41	0.36	
28.00	0.00	-0.11	0.23	0.00	-0.12	0.22	
29.00	0.00	0.06	0.12	0.00	0.04	0.12	
30.00	0.00	0.14	0.04	0.00	0.12	0.05	
31.00	0.00	0.16	0.00	0.00	0.15	0.00	
32.00	0.00	0.14	-0.03	0.00	0.14	-0.02	
33.00	0.00	0.11	-0.03	0.00	0.11	-0.03	
34.00	0.00	0.08	-0.03	0.00	0.08	-0.03	
35.00	0.00	0.05	-0.03	0.00	0.05	-0.03	
36.00	0.00	0.03	-0.02	0.00	0.03	-0.02	
37.00	0.00	0.01	-0.01	0.00	0.01	-0.01	
38.00	0.00	0.00	-0.01	0.00	0.00	-0.01	
39.00	0.00	0.00	0.00	0.00	0.00	0.00	
40.00	0.00	-0.01	0.00	0.00	-0.01	0.00	

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

7.8.4 Verification of Pile stability

a. The	a. The factored resistance of piles shall be taken as : $R_R = \gamma(\emptyset R_n - W_S) + W_s - W$									
where										
R_R	factored resitance of pile, kN									
R_n	nominal resistance of pile, kN									
W_s	effective weight of soil replaced by pile, kN									
W	effective weight of pile and soil inside pile, kN									
Ø	resistance factor for pile under extreme event limit state 0.65-BSDS Article 5.4.1(5)									
Ŷ	modification coefficient depending on nominal bearing resistance 1.00-BSDS Table 5.4.3.3-1									
b. The bea	nominal bearing capacity can be obtained from the empirical ring capacity estimation formula:									
R_n =	$R_n = q_d A_p + U \Sigma L_i f_i$									

where:		Commentary
$egin{array}{c} R_n & \ A_p & \ q_d & \ U & \ L_i & \ f_i & \end{array}$	nominal bearing capacity of pile, kN area of pile tip nominal end bearing resistance intensity per unit area, kN/m ² perimeter of pile thickness of soil layer considering shaft resistance, m maximum shaft resistance of soil layer considering pile shaft resistance, kN/m ²	
c.	The factored axial pull-out resistance of a single pile shall be obtained considering soil conditions and construction methods:	
	$P_R = \not O P_n + W$	BSDS Eq. 5.4.3.4-1
when	re:	
P_R	factored axial pull-out resistance of pile, kN	
P_n	nominal axial pull-out resistance, kN	
W	effective weight of pile, kN	
Ø	resistance factore for pile under extreme event limit state 0.5 -BSDS Article 5.4.1(5)	
d.	Estimation of Nominal End Bearing Resistance Intensity (qd)	
For Cas intensit	st-in-place RC Piles : nominal end bearing resistance 5000 kN/m ²	
On the nomine fully he thickne	e basis of the recent results of loading tests on cast-in-place RC piles, the al end bearing resistance intensity may take the value of 5,000 kN/m2, when a ardened sturdy gravelly ground with an N value of 50 or larger and with a ess of 5m or greater is selected as supporting layer.	
	P _{Ni} - min kN pull-out force	
e.	Estimation of Shaft Resistance Intensity fi acting on Pile Skin UEL _i f _{i kN/m²}	
	Cast-in-place RC Piles	
	For Sandy Soil: $5N (\leq 200)$	
	For Cohesive c or $10N (\le 150)$	

Γ			Louise							Commentary
	N-th	Soil	Thickness	N-Value	Υ'	$L_i * \Upsilon' * A_p$	fi		$U^*L_i^*f_i^*$	
	Layer	Layer	Li					DE	DE	
		Туре	m	Average	kN/m ³	kN	kN/m ²		kN/m ²	
	1	Clay	2.000	12	8.0	18.10	120	1	904.78	
	2	Sand	2.400	40	9.0	24.43	200	1	1809.56	
	3	Clay	6.500	15	9.0	66.16	150	1	3675.66	
	4	Rock	4.400	25	10.0	49.76	150	1	2488.14	
	5	Rock	1.000	50	10.0	11.31	150	1	565.49	
H H F F F Vei	has bee specific Effectiv Effectiv Nomina Result of Result of result of	n assess site. e weigh e weigh l skin fr Nominal Factored Factored	t of soil to t of soil to t of the pil iction of p Bearing Cap Resistance of Axial Pull-co	be replace e with soil le of Single Pil ut Resistance	been con ed by the inside, V gle Pile, R e,R _R : ce of Single	n : e Pile, P _R	no liquefa 16 25 944 150 956 -49	action pc 59.76 k 53.34 k 13.63 k 98.49 k 0.68 k 75.15 k	tential in the N N N N N	
ver	mcation	Ior Later	ai Dispiacei	lent	vernicati	on for waxin				
	Displacen	nent	Verific	ation	Axial	Load				
D	emand C	Capacity	C/D		Demand	Capacity	C/D Verific	ation		
	mm	mm			kN	kN				BSDS pp 4-15: "In IRA, the reference
l	9.88	12	1.21 OI	K	6184.30	9560.68	1.55 OI	Κ		displacemnt at the
Cap	acity =19	6 x Dpile.	See commen	tary		D	1 1: D	2202	00 IN	linear range is recommended to be

Verification for Maximum Axial Pull-out Resistance.

Axial Pu	ıll-out	C/D	Varification		
Demand	Capacity	C/D			
kN	kN				
-608.33	608.33 -4975.15		OK		
	-				

By checking Pmax=	22022.99 kN	I
PNi-max=	7186.76 kN	I
PNi-min =	727.28 kN	I

BSDS pp 4-15: "In JRA, the reference displacemnt at the linear range is recommended to be one percent(1%) of the foundation width (<= 50mm), which is taken as the allowable displacemen required from the substructure. However, under earthquake loading this value is taken as a reference and may not necessarily be adhered to and may reach as much as 5% of the foundation width."

0

7.8.5 Verification of Pile structural resistance

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

												Commentary
Verification	of Mini	imum Re	equired L	ongitudin	al Reinfo	rceme	nt					
The longi	tudinal ro	einforcen	nent shall b	e verified	according	g to the	following :					
	A a	total area	of longitu	dinal reinf	orcement	mm ²						
	A_s	cross-see	ctional are	a of single	longitudir	, mm nal reint	forcement. mn	1 ²				
	A_s gross area of pile, mm ²											
				. 1 11	. 1 . 1	1 0	01					
A . 1	The long	itudinal re	einforcem	ent shall no	ot be less	than 0.0	01					
			•DGCS 12.7.11									
B . 7	B. The longitudinal reinforcement shall be more than 0.04 times the gross section area											DCCS 127 11 2 for
		$\rho_s = \rho_s$	$A_a/A_g <$	0.04								DGCS 12.7.11.2 for Zone 3 & 4
Г												
	Pile Diamatan	Bar Diamatar	Number	A_s	A_a	A_{g}	ρ _s	Ver	rification	1		
1	Diameter	Diameter	of Bars									
	m	m	No.	m ²	m ²	m ²	ratio		A	В	5	
								ρ	> 0.01	ρ _s <	0.04	
	1.20	0.028	24	0.00062	0.01478	1.13	0.013		OK	0	K	
Varification	of Mini	imum Pa	T haring	manguarga	Rainford	omont						
v CI III Catioli			equite i	allsveise	Kennor	.emeni						
The ratio	of spiral	reinforce	ement to to	otal volum	e of conc	rete con	re masured out	-to-out of spir	als shal	l be :		
A. 7	The grea	ter of :										
	ρ _{s1} = where	= 0.12*(f e :	" _c /f _y)	and	$\rho_{s2}=0.$.45*[(1	A g/A c) - 1] *	(f'_c/f_y) (fo	r circula	ar shap	be only)	
	A_{g}	gross are	ea of pile, i	mm ²								
	A_{c}	area of c	ore measu	red to the	outside di	iameter	of the spiral, 1	nm ²				
D (<u>Obeelvin</u>	- facas au	aridad aa	.ft	where As		ant animal lag a	n ana (1) aida				
D. (CHECKIN	g nom pr ⊿∗∆	ovided col	minement	where As	repres	ent spirar leg o	II one (1) side.				
	$\rho_{s3} = \cdot$	D_*	- >	greater of	ρ_{s1},ρ_{s2}							
	where	e:										
	A_s	area of s	hear reinfo	orcement,	mm ²							
	D_r diameter of pile passing the centers of the longitudinal reinforcement, mm											
Pile	A	o	A	Α.	ρ.	2	$\rho s_1 =$	ρ,	ρ.	3		
Diameter		2	ž	5	1-3	-	0.12*(f' _c /			-	Verification	
m	m	2	m ²	m ²	rat	tio	ratio	use max.	Verific	atio		

OK

0.01015

0.00810

0.00931

0.00020 0.00931

1.20

1.13

0.87

			Comr	nentary
Summary of results	Number of Piles	б		
	Length	16m		
	Diameter	1200mm		
	Reinforcemnt	24-28diam		
	Spiral Reinf.	<u>16@80</u>		

7.8.6 Pile Details

CHAPTER 8: UNSEATING PREVENTION SYSTEMS

Chapter 8 Unseating Prevention Systems

Example Bridge

(1) Bridge Type 2 span continuous steel box girder

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Figure 8-3 Example Bridge (c)

Ground Type: TypeII

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

8.1 Seat Length

 $S_E = u_R + u_G \ge S_{EM}$ (8.1-1) ¥ $S_{EM} = 0.70 + 0.005l$ (8.1-2) ¥¥

l: Effective span length(m) =85.9m

S_{EM}=1.130m

 $u_G = \varepsilon_G \quad L = 0.00375 * 85.9 = 0.322 \text{m}$

 u_R = Maximum relative displacement between the superstructure and top of the abutment. 0.90m S_E=0.900+0.322=1222mm>S_{EM}=1130m

 S_{Ed} : 1500 m m (Designed)

Figure 8.1-1 (a) Girder End Support

Figure 8.1-2 (b) Intermediate Joint (Hinge/Bearing Joint)

8.2 Unseating Prevention Devices (Longitudinal)

Unseating prevention devices are designed based on JRA Vol 5 2012. Adopted device is the connection method with use of PC cable which is anchored at parapet of abutment and lateral beam which is installed inside the box of main girder at A1 abutment and P2 pier.

Reaction of dea	ad load kN
	RD
A1	5240.0
P2	6960.20

Design example is shown about P2 pier.

1. Design Condition

1) Design Load

Design seismic force applied to PC cable

 $H_F = P_{LG}$ (but $H_F \leq 1.5R_d$) = 10440.3 kN \rightarrow 10440.3 kN

 R_d : Reaction of dead load = 6960.2 kN (1.5 × 6960.2 = 10440.3 kN)

 $P_{\text{LG}}\text{:}$ Longitudinal horizontal strength of supporting substructure – kN

Design seismic force P for 1 PC cable

$$\begin{split} \mathbf{P} &= \mathbf{H}_{\mathrm{F}} \div \mathbf{n} \times \sqrt{(1^2 + (\tan \theta \, \mathrm{v})^2 + (\tan \theta \, \mathrm{h})^2)} \\ &= 10440.3 \div 4 \times \sqrt{(1 + (\tan 0.0)^2 + (\tan 0.0)^2 = 2610.1 \, \mathrm{kN})} \\ &\text{where:} \\ &\text{n: number of cables 4} \\ \theta \, \mathrm{v: Cable setting angle (vertical)} \\ &0^\circ \end{split}$$

 θ h: Cable setting angle (horizontal) 0 °

2) Design Gap

Design gap Sp of unseating prevention device shall be assured with the movement amount corresponding to the allowable strain and shall not exceed the value of seat length multiplied by design displacement coefficient.

Design minimum gap

 $S_{F(min)} = \Sigma t \times \gamma = 228 \times 2.5 = 570 \text{ mm}$

where:

Total rubber thickness, $\Sigma t = 228$ mm γ : strain factor = 250%

Design maximum gap

 $S_{F(max)} = C_F \times S_E = 0.75 \times 2450 = 1838 \text{ mm}$

where:

 $\begin{array}{rcl} C_{F}: \text{ Design displacement coefficient } = 0.75\\ S_{E}: \text{ Seat length } = 2450 \text{ mm} \end{array}$ $\begin{array}{rcl} \text{Determination of design gap}\\ S_{F(\text{min})} & \leq & S_{F} \leq & S_{F(\text{max})}\\ 570 & \leq & S_{F} \leq & 1838 \text{ then } SF = 600 \text{ mm} \end{array}$

2. Determine of fabrication length of spring

 $N = b + \sigma 1 \div ns + 2 \times \phi + \sigma 2$

N : Fabrication length round up by 50mm unit.

b : Setting amount (mm) (S_F/N_S)

- $\sigma 1$: Expansion and contraction amount due to temperature change (mm)
- ϕ : diameter of spring (mm) n_s : number spring
- σ^2 : Minimum compression amount is 100 mm during installation

 $N = b + \sigma 1 \div ns + 2 \times \phi + \sigma 2$ $= 300 + 60 \div 2 + 2 \times 13.0 + 100$ $= 456.0 \text{ mm} \rightarrow 500 \text{ mm}$ 300 b : mm : $\sigma 1$ 60.0 mm ø : 13.0 mm $\sigma 2$: 100 mm or more : 2 ns

3. Design of PC cable and its buffer

1) PC cable

F360TD is adopted for PC cable yield strength Py = 2962 kNP = 2610 kN < Pa = Py = 2962 kN OK

2) Buffer

Synthesized rubber textile fiber added (hardness $80^{\circ}\pm5^{\circ}$) is used for buffer placed at anchor part of PC cable. Allowable bearing stress of rubber is 24N/mm2 considering increase ratio of allowable 1.5.

(1) Girder side

Buffer and bearing plate, diameter (D) =	390 mm			
Hole diameter $(d) =$	117 mm Circular shape			
Steel beam is adopted for anchoring.				
Hole diameter is 135mm				
(i) Bearing stress of buffer				
Bearing area Ab = $(D^2 - d^{2}) \times \pi \div 4 = 105145 \text{ mm}^2$				
Bearing stress of buffer				
$\sigma b = P \div Ab = 24.8 \text{ N/mm}^2 \leq \sigma ba = 1.5 \times 24$	$4 = 36 \text{ N//mm}^2$ OK			

4. Calculation of lateral beam (Anchor beam)

(a) Calculation of main part lateral beam

It is designed as the simple beam with supporting span 2.7 m (web plate distance). Plate thickness is 22mm assuring enough rigidity.

(i) Calculation of sectional force:

(ii) Section calculation

Position of maximum force

A(mm2)y (mm) Ay (mm3) Ay²orI(mm4) 630 x 22 : 13860 < SM490Y > 1 - PL 286.03963960 1133692560 < SM490Y > 2 - PL 550 x 25 : 27500 693229167 _ _____ SM490Y > 2 - PL 50 x 22 : 2200 -214.0-470800100751200 A =43560 3493160 1927672927 -278784000e = 3493160 / 43560 = 80 mm I = 1648888927 mm4 yu = 275 + 22 - 80 =217 mm y1f = 275 - 50 +80 = 305 mm y1w = 275 + 80= 355 mm $\sigma u = 1566.1 \times 10^{\circ}6 / 1648888927 \times 217 = 206.1 \text{ N/mm2} < \sigma a = 357.0 \text{ N/mm2}$ $\sigma lf = 1566.1 \times 10^{6} / 1648888927 \times 305 = 289.7 \text{ N/mm2}$ $\langle \sigma a =$ 357.0 N/mm2 σ 1w = 1566.1 x 10^6 / 1648888927 x 355 = 337.2 N/mm2 $< \sigma a = 357.0 \text{ N/mm2}$ $= 2610.1 \times 10^{3} / 27500$ 94.9 N/mm2 $< \tau a = 204.0$ N/mm2 τ = $\sigma a = 1.7 \ x \ 210.0 = 357.0 \ N/mm2$, $\tau a = 1.7 \ x \ 120.0 = 204.0 \ N/mm2$

Resultant stress : (337.2 / 357.0) 2 + (94.9 / 204.0) 2 = 1.11 < 1.2

(iii) Welding with web plate of main girder

Size of flange: S = K shape groove weld

Web $S = 2610.1 \times 10^3 / 4 \times 550 \times 0.707 \times 204.0 = 8.23 \text{ mm}$ $S' = \sqrt{2t} = \sqrt{(2 \times 25)} = 7.07 \text{ mm}$

as above 9mm fillet weld

Size of rib: S = K shape groove weld with web of main girder and filet weld with more than $\sqrt{2t}$

(b) Calculation of reinforcement rib at anchor part of PC cable

Verify stresses assuming simple girder supported by 2 webs of lateral beam.

(i) Calculation of sectional force

 $M = P \cdot L / 4 = 2610.1 \times 0.425 / 4 = 277.0 \text{ kN} \cdot \text{m}$

 $S = P / 2 = 2610.1 x \frac{1}{2} = 1305.0 kN$

(ii) Stress calculation

								A(mm2)	y (mm2)	Ay(mm3)	Ay ² orI(mm4)
<	SM490Y	> 1	-	PL	972 x	22	:	21384	281.0	6008904	1688502024
<	SM490Y	> 2	-	PL .	540 x	22	:	23760	_	_	577368000
								45144		6008904	2265870024
										_	-798552216
				e =	6008	904	/	45144 =	133 mm	I =	1467317808 mm4
				yu =	270	+ 2	22	- 133 =	159 mm		
				y1 =	270	+ (0	+ 133 =	403 mm	> yu	

Resultant stress : $(76.1 / 357.0)^{2} + (58.7 / 204.0)^{2} = 0.13 < 1.2$

(iii) Weld design with lateral beam

Fillet weld Size of Flange: $S = \sqrt{2t}$ or more

Fillet weld Size of Web: S = 1305.0 x 10³ / 4 x (540-35) x 0.707 x 204.0=4.48 mm S' = $\sqrt{2t} = \sqrt{(2 \times 22)}$ =6.63 mm

From above, Fillet weld size is 7 mm

(c) Verification of Web plate of main girder

Check the plate when design earthquake P acts on failing bridge prevention structure.

2 cases are considered

1st one is broken by tensile force at section A-A

2nd one is broken by shear at section B-B (refer to figure below)

Verification of tensile stress at A-A section

Design seismic force of unseating prevention device arranged on web plate are assumed to be distributed uniformly.

$$\sigma = P / Hw \times Wt$$

= 2610.1 × 10³ / 650 × 14 = 286.8 N/mm2
< $\sigma a = 1.7 \times 210.0 = 357.0$ N/mm2

where: Hw = width of reinforcement plate (650mm)

Wt = Thickness of web of main girder (t=14mm)

Verification of shear stress on B-B section

$$\tau = P / 2 \times Wl \times Wt$$

= 2610.1 × 10³ / 2 × 3978 x 14 = 23.4 N/mm2
< $\tau a = 1.7 \times 120.0 = 204.0$ N/mm2
where: Wl = Broken length at B-B section (3978mm)

Wt = Thickness of web of main girder (t=14mm)

5. Verification of deflection bracket for unseating prevention device

Increase of allowable stress is 1.7

Acting force generated from cable is as follows

assume 30°leaning in vertical direction assume 30°leaning in horizontal direction

(a) Applying Force

Cable Force	: P	= 2610.1 from previous calculation
Vertical Force	: Hv	$= 2610.1 \times \sin 30^\circ = 1305.1 \text{ kN}$
Horizontal Force	e: H _H	$= 2610.1 \times \sin 15^{\circ} = 675.5 \text{ kN}$

(b) Verification in vertical direction

Verified assuming a column of cross shape composed of web of lateral beam and stiffener Effective buckling height is all height (H = 3150mm)

Verification of axial compressive stress

 $σ c = 1305.1 x 10^3$ $Sec = 1305.1 x 10^3$ Sec = 239.9 N/mm2 < 1.7 σ ca = 270.3 N/mm2 $I = 219^3 x 14$ I = 12254036 mm4 $r = \sqrt{(12254036 / 11864)} = 32.14$ I/r = (3150 x 1/2) J = 12254036 mm4 I/r = (3150 x 1/2) J = 49.0 > 15 σ cag = Table 3.2.2 in close 3.2 in JRA = 159.0 N/mm2 b/t = 100 $I = 7.1 < 10.5 ({} \text{EU}_{,} < 16)$ σ cal = Table 4.2.3 in close 3.2 in JRA = 210.0 N/mm2 σ cao = apper limit of σ cag = 210.0 N/mm2 σ cao = σ cag · σ cal σ cao = 159.0 N/mm2

Effective section of web	: Disadvantageous side of 24t of web thickness or
	whole width of attached bracket
Effective section of stiffener	: Disadvantageous side of stiffener width or
	attached bracket width + 4mm both side

Verification of weld

Applying force is assumed to be triangular distribution in consideration for safety Effective weld length does not include deflection bracket and scallop

 $S = 2 \times 1305.1 \times 10^{3} / 4 \times (1000) \times 0.707 \times 120.0 \times 1.7$ = 4.52 mm < S' = $\sqrt{2}t = \sqrt{2} \times 19 = 6.16$ mm As above, size of fillet weld is 7 mm.

(c) Verification in Horizontal direction

Verification for following force along the web plate (hatched part) Minimum thickness is 22mm

Bending moment

Applying force:	$H_{\rm H} =$	675.5	kN				
Span length:	LB =	250	Mm				
Distributed load:	q =	2702	N/mm				
	Mmxa =	$-q \times LI$	$B^{2} / 12 = 14072917$ N.mm				
Shear force							
S =	$H_{\rm H} =$	675.5	\times 10 [°] 3 / 2 = 337750 N				
Verification of Stress							
Use section:	t = 36	mm <	<sma490w></sma490w>				

Section: $A = 200 \times 36 = 7200 \text{ mm2}$

(d) Bearing stress of concrete on the parapet of abutment

Buffer and bearing plate are assumed to be circular, diameter is 390mm and hole diameter is 117mm

Box out pipe is used for anchor part of concrete Outer diameter of box out (d2') = 140 mm (VP125)

- (i) Bearing stress of buffer Bearing area Ab' = $(D^2 - d2'^2) \times \pi \div 4 = 104065 \text{ mm}^2$ Bearing stress of buffer $\sigma b = P \div Ab' = 25.1 \text{ N/mm}^2 \leq \sigma ba = 1.5 \times 24 = 36 \text{ N/mm}^2$ OK
- (ii) Bearing stress of concrete

 $\sigma b = P \div Ab' = 25.1 \text{ N/mm}^2 > \sigma ba = 18.0 \text{ N/mm}^2$ Stiffener is necessary where: σba : allowable bearing stress in case of partial loading

 σ ba = 1.5 × (0.25 + 0.05 × Ac ÷ Ab) × σ = 1.5 × (0.25 + 0.05 × 16.8) × 24

= 18.0 N/mm² (but, $\sigma ba \leq 1.5 \times 0.5 \sigma$)

Ac: Effective area of concrete in case of partial loading

Ac = $(Dc^2 - d2'^2) \times \pi \div 4 = 1751752 \text{ mm}^2$

Ac is circle area with diameter of half of distance of 2 cable

 $Dc = 1500 \text{ mm } Dc \leq 5 \times D$) in condition

Ab': Area of concrete face subjected with partial loading

Ab' = $(Dc^2 - d2'^2) \times \pi \div 4 = 104065 \text{ mm}^2$

therefore: $Ac \div Ab' = 16.8$

As bearing stress of concrete exceeds the allowable bearing stress, stiffener is installed for the purpose of distribution.

Effective bearing diameter is 440 x 440 in relation of outer diameter of buffer and thickness of rib plate.

Reverification of bearing stress of concrete after installation of stiffener

Bearing Area Ab' = D² - d2'² x $\pi \div 4 = 178206 \text{ mm}^2$ $\sigma b = P / Ab' = 14.7 \text{ N/mm}^2 \leq \sigma ba = 18.0 \text{ N/mm}^2$ OK σba Allowable bearing stress in case of partial loading $\sigma ba = 1.5 \text{ x} (0.25 + 0.05 \text{ x Ac} \div \text{ Ab'}) \text{ x } \sigma$ = 1.5 x (0.25 + 0.05 x 12.5) x 24 $= 18.0 \text{ N/mm}^2 \text{ (but, } \sigma ba \leq 1.5 \text{ x } 0.5 \sigma)$ Ac: Effective bearing area on concrete face in case of partial loading Ac = Dc² - (d2'² x $\pi \div 4$) = 2234606 mm² Ac is the area of rectangle with distance between center of cable as a side Dc = 1500 mm (but, Dc $\leq 5 \text{ x } D$) Area of concrete surface subjected by bearing in case of partial loading Ab' = D² - (d2'² x $\pi \div 4$) = 178206 mm² Then Ac \div Ab = 12.5

6. Design of parapet of abutment

1) Verification of punching shear Increase factor of allowable is 1.5Cable number for verification n = 2Distance of cable Dc' = 1500mm

Shear resistance area

A =
$$(D \times 4 + h \times \pi + Dc \times 2) \times h$$

= $(440 \times 4 + 1350 \times \pi + 1500 \times 2) \times 1350$
= 12151553 mm^2

where: h: Effective height = h1-h2 = 1500-150 = 1350 mm

h1: thickness of concrete 1500 mm

h2: Cover of re bar = 150 mm

Punching shear stress

$$\begin{aligned} \tau &= P \times 2 \div A = 2611000 \times 2 \div 12151553 \\ &= 0.43 \text{ N/mm}^2 \leqq \tau a = 1.5 \times 0.90 = 1.35 \text{ N/mm}^2 \quad \text{OK} \end{aligned}$$

8.3 Unseating Devices (Transverse)

• Al Abutment

1. Outline

The bridge is curves bridge applicable to provision 16.1(4)1), then transverse displacement prevention structure shall be installed.

The gap in-between bracket is 100mm in consideration for transverse direction associated with longitudinal movement during earthquake.

Displacement during earthquake is derived from dynamic analysis.

2. Design force

Hs = $3 \cdot kh \cdot Rd/n$ For SI support = 4087.2 kNkh = 0.26Rd = 5240 kN/piern = 1 installation number

\$1 Support

Transverse displacement prevention structure

- 3. Calculation of bracket on upper structure side
 - (1) Design of buffer rubber

Used rubber is chloroprene rubber (hardness 55±5°)

Necessary sectional area: Areq = $4087.2 \times 10^3 / 12.0 / 1.5 = 227067 \text{ mm}^2$

Used sectional area: $A = 500 \times 500 = 250000 \text{ mm}^2 > \text{Areq}$

- (2) Design of bracket
 - Mounting part of buffer
 Design reaction = 4087.2 kN

(3) Bracket

Mounting part to lateral beam calculation

		(Conversion va	alue to n	formal time (1/1.7)
Sectional force	M = Hs • $e =$	4087.2	× 0.450 / 1.7	=	1081.9 kN • m
	S = Hs =	4087.2		=	2404.2 kN
. 500	distance of fixing	g point L=	900 mm		
	(SMA490W) 2 - FLG 5	00×22	$A(mm^2)$ 22,000	y(mm) 511	Ay ² +I (mm ⁴) 5, 745, 549, 333
0 <u>22</u>	1 - WEB 10	00×22	22,000		1, 833, 333, 333 7, 578, 882, 666
	yu = yl =	522 mm -522 mm	L/b = Aw/Ac =	6 2. 00	$\langle 30 \\ \leq 2 \rangle$

effective width of section is 12t and within buffer rubber size

Jetress $\sigma t = M / I \cdot yu = 74.5 \text{ N/mm}^2 < \sigma ta = 210.0 \text{ N/mm}^2$ $\sigma c = M / I \cdot yI = -74.5 \text{ N/mm}^2 < \sigma ca = 198.5 \text{ N/mm}^2$ $\tau = S / Aw = 109.3 \text{ N/mm}^2 < \tau a = 120.0 \text{ N/mm}^2$ Resultant stress (74.5 / 210.0)²+(109.3 / 120)² = 0.96 < 1.2

weld between web and base plate

Necessary fillet weld size

Weld between flange and base plate is full penetration as shown below

-K<FP

- (4) Design of mounting part of bracket
 - (a) High tension bolt is used for mounting bolt (m22(S10TW, 2 row are arranged on both sides of neutral axis of bolt group).

Allowable force of bolt is determined by 1.7 times of normal time

Lever reaction force generated by tensile force is considered

Verification for friction connection (Resultant force is considered in case that whole number of bolts are effective.

Force applying to 1 bolt

 $\rho = P \div n_b = 4087200 \div 56$

 $= 72986 \text{ N} \leq \rho_a = 1.7 \times 48704 = 82797 \text{ N}$

 ρ_{a} : Allowable force for 1 friction high tension bolt (1 plane friction strength: inorganic zinc rich paint is considered

 n_b : Bolt number = 56 (whole bolt number)

(b) Verification of bolt tension

Verify the tensile force of a bolt by calculating secondary moment of inertia around the neutral axis of bolt group.

Bending moment

 $M = P \times L = 4087200 \times 400.0 = 1634880000 \text{ N} \cdot \text{mm}$

Row No	Number	pitch	distance	n•y	ye	n• ye ²
KOW INU	n (mm)	(mm)	y (mm)	(no. mm)	(mm)	(mm ²)
1 row	6	0	0	0	581.0	2025366
2 row	6	140	140	840	441.0	1166886
3 row	4	98	238	852	343.0	470596
4 row	4	98	336	1344	245.0	240100
5 row	4	98	434	1736	147.0	86436
6 row	4	98	532	2128	49.0	9604
7 row	4	98	630	2520	-49.0	9604
8 row	4	98	728	2912	-147.0	86436
9 row	4	98	826	3304	-245.0	240100
10 row	4	98	924	3696	-343.0	470596
11 row	6	98	1022	6132	-441.0	1166886
12 row	6	140	1162	3972	-581.0	2025366
13 row	0	0	0	0	0.0	0
14 row	0	0	0	0	0.0	0
15 row	0	0	0	0	0.0	0
Total	56	1162		32536		7997976

Arrangement of bolt

Painted part shows compressive bolts ye: distance from neutral axis (+tension,

- compressive)

Neutral axis of bolt group

$$e = \frac{\Sigma ny}{\Sigma n} = 581.0 \text{ mm} \qquad \qquad \frac{\Sigma ny: n \bullet y \text{ Sum}}{\Sigma n: \text{ total number}}$$

Bolt tension (lever reaction is ignored)

$$\rho_{t}' = \frac{M}{\Sigma (n^{\bullet}ye^{2})} \times ye_{max} = \frac{1634880000}{7997976} \times 581.0 = 118763 \text{ N}$$

Calculation of lever reaction coefficient

In consideration for lever reaction generated by tension force, calculate the lever reaction coefficient regarding "a" part based on the "Draft of design guideline of tension connection with use of high-tension bolt"

nf:	Bolt number resisting load as the tension connection	=	12 mm
n':	Bolt number arranged on the one side of T flange/2 (longitudinal direction)	=	6 mm
c :	Distance of ete of T web direction $\leq 3.5b$	=	75 mm
e :	Bolt edge distance in T web direction	=	45 mm
w:	Length of T flange $(n'-1) c + 2e$	=	500 mm
t :	Thickness of T flange 1.0d (Base plate thickness	=	28 mm
tw:	Thickness of T web (thickness of rib)	=	22 mm
tc:	Base plate thickness where T flange is connected $\geq t$	=	19 mm
d :	Nominal bolt diameter	=	22 mm
d':	Bolt hole diameter d+3	=	25 mm
Ab:	Axial sectional area $(d/2)^2\pi$	=	380.1 mm ²
c' :	Distance of ete of bolt in T flange direction	=	140 mm
b :	Distance between bolt center to surface of T web (c'-tw/2)	=	59.0 mm
a :	Distance between bolt center to end of T flange	=	45 mm
s :	Weld size of flange and web (leg length of groove fillet weld)	=	5.5 mm
b':	Distance between bolt center to center of fillet weld of T web/2	=	56.3 mm

$$\phi = a \swarrow b' = 45 \swarrow 56.3 = 0.80$$

$$\eta = \frac{24 \text{ n}' \cdot \text{Ab} \cdot \text{b}'^3}{\text{w} \cdot \text{t}^3 (\text{t} + \text{tc})}$$

$$= \frac{24 \times 6 \times 380.1 \times 56.3^{-3}}{500 \times 28^{-3} \times (-28 + -19)} = -18.9$$
Therefore $\eta \cdot \phi^3 - \phi^2 - 2\phi - 1 = 0$

$$\emptyset = 0.49$$

$$\emptyset = 0.49 \le \phi = -0.80$$

$$pu = \frac{1}{2} \times \frac{1}{(1 + \phi)^2 - 1}$$

$$= \frac{1}{2} \times \frac{1}{(1 + 0.49)^2 - 1} = -0.41$$

Load applying to 1 bolt in consideration of lever reaction

$$\begin{array}{rcl} \rho \, \mathrm{t} &=& \rho \, \mathrm{t}' \, \left(1 + \mathrm{py}\right) &=& 118763 & \times & \left(\begin{array}{ccc} 1 &+& 0.58 \end{array} \right) \\ &=& 187646 \, \mathrm{N} \leq \rho_{\mathrm{ta}} = 1.7 \, \times & 160000 \, = \, 272000 \, \mathrm{N} \end{array}$$

where: ρ_{ta} : Allowable force per 1 high tension bolt for tension connection

(c) Verification of base plate thickness

σ y:	Yield stress of T flan	ge =	355 N/mm ²	(SMA490W)
-------------	------------------------	------	-----------------------	-----------

- σ u: Tensile strength of T flange = 490 N/mm²
- By: Yielding bolt axial force = 273 kN
- py: Coefficient of lever reation at yielding of axial force

$$py = \frac{(11 + Pu) Pu}{10 - (1 + Pu)^2} = \frac{(11 + 0.41) \times 0.41}{10 - (1 + 0.41)^2} = 0.58$$

$$k = 0.5 + 0.9 \sigma u / \sigma y = 0.5 + 0.9 \times 490 / 355 = 1.74$$

$$\delta = 1 - n' \cdot d' / w = 1 - 6 \times 25 / 500 = 0.70$$

Necessary baseplate thickness

$$t1 = \sqrt{\frac{6 \text{ n}' \cdot \text{By} \cdot \text{py} \cdot \text{a}}{\delta \cdot \text{w} (1+\text{py}) \text{ k} \cdot \sigma \text{ y}}} = \sqrt{\frac{6 \times 6 \times 273 \times 1000 \times 0.58 \times 45}{0.70 \times 500 \times (1 + 0.58) \times 1.74 \times 355}} = 27.5 \text{ mm}$$

$$t2 = \sqrt{\frac{6 \text{ n}' \cdot \text{By} (\text{b}' - \text{a} \cdot \text{py})}{\text{w} (1+\text{py}) \text{ k} \cdot \sigma \text{ y}}} = \sqrt{\frac{6 \times 6 \times 273 \times 1000 \times (56.3 - 45 \times 0.58)}{500 \times (1 + 0.58) \times 1.74 \times 355}} = 24.7 \text{ mm}$$

$$t = 28 \text{ mm} \geq t1 \text{ , } t2$$

(d) Reduction of allowable sear stress of High-Tension Bolt

(1) From Eq. 7.3.10 in provision 7.3.7 JRA

$$\rho a = \rho a 2 \cdot (n \cdot N - T) / (n \cdot N) = 48704 N$$

 ρ a : Allowable shear force per 1 bolt (N)

- ρ a2 : Allowable bolt force of 1 1 bolt as a friction connection (N) 54000 N
 - n : Total number of bolt at connection part 56
 - N : Initial induction axial force of bolt (N) 205000 N
 - T : Tensile force applying to connection part (N) 1125876 N

4. Reinforcement to Lateral Beam

Reinforcement rib is installed for the coupling force due to bending moment caused by horizontal force.

Where, this reinforcement rib is used to double with vertical stiffener of lateral beam.

Acting bending moment and coupling force

M = 1634.9 kN·m Pv= 1634.9 / 1.000 = 1634.9 kN

Reinforced section (SMA400W) 2 - 245×22 10780 231927681 mm^4 288×12 3456 $(24 \cdot t)$ 1 -127.6r = mm $\Sigma A =$ 14236 mm^2 L = 3150 mm 24.7 L/r => 18 b/t =11.1 > 12.8, $\sigma \operatorname{cao} = 140 \text{ N/mm}^2$ 134.5 N/mm^2 σ cag = 185.5 N/mm^2 σ cal = $\sigma \operatorname{cag} \cdot \sigma \operatorname{cal} / \sigma \operatorname{cao} = 178.2 \text{ N/mm}^2 \times 1.7 = 303 \text{ N/mm}^2$ σ ca =

axial compressive stress

 $\sigma c = 1634.9 \times 10^3 / 14236 = 115 \text{ N/mm}^2 < \sigma ca= 303 \text{ N/mm}^2$

Weld between reinforcement rib and web of lateral beam

 $\sqrt{2t} = \sqrt{(2 \times 22)} = 6.6 \text{ mm}$

Necessary weld length when fillet weld size is 7mm Lreq

Lreq = $2 \times 1634.9 \times 10^3 / (4 \times 6 \times 0.707 \times 80 \times 1.7)$ = 1416.9 mm < WH

As above mentioned, required welding length is less than the girder height of lateral beam, it is extended as the vertical stiffener.

5. Verification of lateral beam

Section calculation is carried out assuming lateral beam are subjected with axial force from lateral displacement prevention device in addition to dead load.

 $Md = 412.8 \quad kN \cdot m \quad Confer to design of lateral beam \\ Sd = 189.5 \quad kN \\ Ne = 4087 \quad kN \quad / \quad 1.7 = 2404 \ kN \ (converted value of normal time)$

Section S	Section S1 (%{weathering steel is adapted.						
Sectional force	Loading case name	MY	SZ	NX	MZ	SY	MX
(1) CA	SE. 1	412.80	189.49	-2404.00	0.00	0.00	0.00
	section j Tmin	Material qual	ity <dimer< td=""><td>nsion></td><td><</td><td>Section shape</td><td></td></dimer<>	nsion>	<	Section shape	
1-FLG	300x 10> 9.00	SM490Y)	AS=	41688 mm2	2 <	>1	= 10
I-WEB	2369x 12>11.30	(SM490Y)	JX=0.000	000271 m4		(UF2) ((UF)
1-FLG	040X 19210.00	5M490Y)	AW/AS = (). 68/0. 4	U		
sectional	force = 4	1688	41688 r	n m 9	web height	W (UW)	
δ	= 2	208 3	0 0 mr	n n	2369	\mathbb{R}^{W} (CW)	
Moment of	of inertia $= 0.0303$	5920 0.00	027216 r	n 4	T = 12	W	
Buckling	length = 4 .	3000	4.3000 r	n		W (LW)	
Radius of girati	on of area = 853 .	3745 8	0.7990 r	nm	L	LLLLLLLLL	
slendernes	s ratio) = 5.	0388 5	3.2185		1	(LF2) ((LF)
Euler's buckl	ing stress = 7	7745	697 N	N/mm2	<		= 19
Effective width c	oefficient = 1.0	00000 1	. 00000			221	
Verification of distance	e of vertical stiffener ()	Horizontal stiffer	ner is 1 tier)	$\sigma = 76.6$	$\delta, \tau = 2.$	2 Decision () eq.	0.11<1.0
Allowable st	ress (N/mm2) lo	ading case name	e =CASE. I	L	upper	r flange web	Lowe flange
allwable stress in co	onsideration for local bu	ickling related c	hapter 4.2 J	RA Vol 5 (σ	cal) 11	0.9 210.0	119.1
后allowable	e stress without conside	ration for local l	buckli ng	(σ	cag) 15	2.7 152.7	152.7
Jupper limi	t of allowable stress wi	thout considerat	ion for local	l buckling (σ	cao) 21	0.0 210.0	210.0
Allowable a	xial compressive stress	(σ	ca=σ cag	g*σ cal/σ	cao) 8	0.6 152.7	86.6
Allowable bending co	mpressive stress (σ b	agy)L 4.30	0 L/B= 1	4.3<27 8	3. 0<27 13	4.4 210.0	187.7
〈 Stress 〉	«CASE.1» σ NX	x= −57.7< 8	0.6				
factor dependin	g on stress gradient. U	-FLG=1.000	0、L-FLG=	=1.0000)			
	σ ΜΥ σ ΜΖ	σΝΧΣσα	o cal	τ SZ τ SY	ί τ ΜΧ Σ	$\Sigma \tau \tau a < 1.$	0 <1.2
UF -	19.1 0.0 -5	57.7 -76.8	<111	0.0 0.0	0.0	0.0<120 0.8	36 0.13
UF2 -	19.1 0.0 -5	7.7 -76.8	<111	1.3 0.0	0.0	1.3<120 0.8	86 0.13
U W -	18.9 0.0 -b	7.7 -76.6	<210	2.2 0.0	0.0	2. $2 < 120 0.4$	7 0.13
	12 2 0 0 -5	7.7 - 21.1	<210	5.3 0.0		$5.3 \le 120 \ 0.3$	
	13.5 0.0 -5	77 - 44.4	<110	1 7 0.0	0.0	1 7 < 120 0.3	0.05
LF	13.5 0.0 -5	7.7 - 44.1	<119	0.0 0.0	0.0	0. 0<120 0. 6	50 0.04
		194.401		1.000/1	8	CORE CONTRACTOR I	8

6. Calculation of bracket in substructure side

Substructure side bracket is associated with the longitudinal movement of superstructure. As movement amount is 600 mm during earthquake, bracket of substructure is arranged with interval of 500 mm to double with superstructure bracket.

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)
(1) Design of web and rib

Effective section width is least of member size, buffer rubber size, 12t

from above Weld is groove fillet 6mm

(2) Calculation of anchor bolt

Sectional forces for design are the applying force of bending moment and shear force at the bottom of base plate

	Number per row	Distance of Row	Accumulated distance	Moment of Area	Distance from Neutral Axis	Moment of Inertia around Neutral Axis
	n (mm)	p (mm)	yi (mm)	n• yi	e-yi (mm)	$n \cdot (e-yi)^2$
1st Row	8	0.0	0.0	0	592.0	2803712
2nd Row	4	192.0	192.0	768	400.0	640000
3rd Row	4	200.0	392.0	1568	200.0	160000
4th Row	4	200.0	592.0	2368	0.0	0
5th Row	4	200.0	792.0	3168	-200.0	160000
6th Row	4	200.0	992.0	3968	-400.0	640000
7th Row	8	192.0	1184.0	9472	-592.0	2803712
$\Sigma n =$	36		$\Sigma n \bullet yi =$	21312	$\Sigma I =$	7207424

Position of Neutral Axis (calculated with origin is 1st row of bolt)

1st row is the farthest tensile bolt row

Eccentricity: $e = \Sigma n \cdot yi / \Sigma n = 592.0 \text{ mm}$ (From 1st row to neutral axis)

Verification of maximum bending tensile stress

 ρ t1 = 889.6 × 10⁶ / 7207424 × 592.0 = 73070 N/bolt

 $<\rho$ ta1 = 112120 N/bolt

Verification of shear force

 ρ t2 = 2404.2 × 10³ / 36 = \Box 6783 N/bolt < ρ ta2 = 91333 N/bolt

Verification of resultant force

k = (73070 / 112120)² + (66783 / 9133)² = 0.96 < 1.2

(3) Calculation at anchoring part

73070 N/bolt
DB-D 32
= 480 mm (15D) = 15D = 480 mm
$\sigma \mathrm{ck} = 24 \mathrm{N/mm}$
$\tau a = 1.60 \text{ N/mm}^2$
τ ca = 0.90 N/mm ²

- Verification of bond stress between concrete and anchor bolt $\rho = 73070 / (32 \times \pi \times 480) = 1.51 \text{ N/ mm}^2 < \tau \text{ a} = 1.60 \text{ N/ mm}^2$
 - $p = 750707 (52 \times n \times 400) = 1.51$ for min < t a = 1.00 for
- Verification of pull out shear stress of concrete

Per 1 bolt

Tensile Bolt Group

Shear resistance area

 $a = 1352 \times 2600 = 3515200 \text{ mm}^2$

Bolt force acting to tension bolt group

 $\Sigma \rho t = 73070 \times 16 = 1169120 \text{ N}$

Pull out shear stress

 $\tau c = 1169120 \; / \; 3515200 = 0.33 \; N/mm^2 < \tau \; ca = 0.90 \; N/mm^2$

(4) Calculation of Base plate

Base plate thickness is determined by bending moment generated by bolt axial force supported by tensile flange

8.4 Settling Prevention Devices

Outline

Load considered is vertical dead load and not horizontal dead load.

Strength limit stress of steel is 1.7 times of allowable stress and capacity of concrete member is obtained as concrete area multiplied by specified design strength. Minimum thickness of structural steel plate is 22mm.

(1) End support

Design regarding P2 where lager reaction occurs.

a) Design Force

Rd = 6975.5 kN/PierUse P2 support n = 4 places P = Rd / n = 1743.9 kN

b) Necessary size of buffer rubber

Using material is equivalent to chloroprene rubber (hardness 55) Necessary area Areq = $1743.9 \times 10^3 / 1.5 / 12 = 96883 \text{ mm}^2$ Used area $A = 300 \times 400 = 120000 > 96883 \text{ mm}^2$

- c) Design of Bracket
 - Mounting section of buffer

• Section calculation of mounting portion to main girder

Converted value to normal time (1/1.7)Sectional forceM = $348.8 \text{ kN} \cdot \text{m}$ (1743.9 × 0.340 × 1/1.7)S = 1025.8 kN

Stress	σt	=	M ∕ I ∙ yu	=	64.9	N/mm^2	<	σta=	210.0 N/mm ²
	σc	=	M / I • yl	=	-64.9	N/mm^2	<	σca=	210.0 N/mm ²
	τ	=	S / Aw	=	91.4	N/mm^2	<	τ a=	120.0 N/mm^2

Resultant stress $(64.9 / 210.0)^2 + (91.4 / 120)^2 = 0.68 < 1.2$

Weld between web and base plate

Necessary size of fillet weld

Sreq = $1025.8 \times 10^3 / (2 \times 0.707 \times 510 \times 120) = 11.9 \text{ mm}$ $\sqrt{2t} = 6.6 \text{ mm}$

From above, size of fillet weld is 12mm.

d) Design of mounting part of bracket

High tension bolt is used for mounting bolt (M22(S10TW,2 row are arranged on both sides of neutral axis of bolt group).

Allowable force of bolt is determined by 1.7 times of normal time

Lever reaction force generated by tensile force is considered

 (i) Verification for friction connection (Resultant force is considered in case that whole number of bolts are effective.

Force applying to 1 bolt

$$\begin{split} \rho = \mathbf{P} \div \mathbf{n}_{b} = & 1743900 \div 28 \\ = & 62282 \div \mathbf{N} \leq \rho_{a} = 1.7 \times 44443 = 75553 \ \mathbf{N} \end{split}$$

 ρ_a : Allowable force for 1 friction high tension bolt (1 plane friction strength: inorganic zincrich is considered n_b : bolt number = 28 (all bolt number)

(ii) Verification of tensile force of bolt

Verify the tensile force of a bolt by calculating secondary moment of inertia around the neutral axis of bolt group

Bending moment

 $M = P \times L = 1743900 \times 340.0 = 592926000 \text{ N} \cdot \text{mm}$

Bolt arrangement

Pow No	Rolt No	pitch	distance	n•yi	ye	n• ye ²
KOW NO	DOIL NO	(mm)	y (mm)	(no. mm)	(mm)	(mm ²)
1 row	4	0	0	0	330.0	435600
2 row	4	130	130	520	200.0	160000
3 row	4	100	230	920	100.0	40000
4 row	4	100	330	1320	0.0	0
5 row	4	100	430	1720	-100.0	40000
6 row	4	100	530	2120	-200.0	160000
7 row	4	130	660	2640	-330.0	435600
8 row	0	0	0	0	0.0	0
9 row	0	0	0	0	0.0	0
10 row	0	0	0	0	0.0	0
11 row	0	0	0	0	0.0	0
12 row	0	0	0	0	0.0	0
13 row	0	0	0	0	0.0	0
14 row	0	0	0	0	0.0	0
15 row	0	0	0	0	0.0	0
Total	28	660		9240		1271200

Painted part shows the compression bolt. Ye: Distance from neutral axis (+ tension side, - compression side)

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding) Neutral axis of bolt group

$$e = \frac{\Sigma ny}{\Sigma n} = 330.00 \text{ mm} \qquad \qquad \Sigma ny: n \cdot y \text{ Total}$$

$$\Sigma ny: No. \text{ Total}$$

Bolt tension (lever reaction is ignored)

$$\rho_{t}' = \frac{M}{\Sigma (n \cdot ye^{2})} \times ye_{max} = \frac{592926000}{1271200} \times 330.0 = 153922 \text{ N}$$

(calculation of lever reaction force)

In consideration for lever reaction generated by tension force, calculate the lever reaction coefficient regarding "a" part based on the "Draft of design guideline of tension connection with use of high-tension bolt"

nf:	Bolt number resisting load as the tension connection	=	8
n':	Bolt number arranged on the one side of T flange/2 (longitudinal direction)	=	4
c :	Distance of ete of T web direction $\leq 3.5b$	=	100 mm
e :	Bolt edge distance in T web direction	=	40 mm
w:	Length of T flange $(n'-1) c + 2e$	=	400 mm
t :	Thickness of T flange \geq 1.0d (Base plate thickness	=	24 mm
tw:	Thickness of T web (Rib thickness)	=	22 mm
tc:	Base plate thickness where T flange is connected $\geq t$	=	14 mm
d :	Nominal bolt diameter	=	22 mm
d':	Bolt hole diameter d+3	=	25 mm
Ab:	Axial sectional area $(d/2)^2\pi$	=	380.1 mm ²
c' :	Distance of ete of bolt in T flange direction	=	130 mm
b :	Distance between bolt center to surface of T web (c'-tw/2)	=	54.0 mm
a :	Distance between bolt center to end of T flange	=	40 mm
s :	Weld size of flange and web (leg length of groove fillet weld)	=	5.5 mm
b':	Distance between bolt center to center of fillet weld of T web b-s/	=	51.3 mm
ϕ	= a / b' = 40 / 51.3 = 0.78		
η	$= \frac{24 \text{ n'} \cdot \text{Ab} \cdot \text{b'}^3}{\text{w} \cdot \text{t}^3 (t + tc)}$		

$$= \frac{24 \times 4 \times 380.1 \times 51.3^{3}}{400 \times 24^{3} \times (24 + 14)} = 23.4$$

Therefore:
$$\eta \cdot \phi^3 - \phi^2 - 2 \phi - 1 = 0$$
 $\phi = 0.45$
 $\phi = 0.45 \leq \phi = 0.78$
 $Py = \frac{1}{2} \times \frac{1}{(1 + \phi)^2 - 1}$
 $= \frac{1}{2} \times \frac{1}{(1 + 0.45)^2 - 1} = 0.45$

Load applying to 1 bolt in consideration of lever reaction

$$\rho t = \rho t' (1 + Py) = 153922 \times (1 + 0.65)$$

= 253971 N \le \rho_{ta} = 1.7 \times 160000 = 272000 N

 ρ_{ta} : Allowable force per 1 high tension bolt for tension connection

- (iii) Verification of base plate thickness
 - σy : Yielding stress of T flange = 355 N/mm (SMA490W material)
 - σ u : Tensile strength of T flange = 490 N/mm
 - By : Yielding bolt axial force = 273 kN
 - Py : lever reaction coefficient at yielding axial force

$$\frac{(11 + Pu) Pu}{10 - (1 + Pu)^2} = \frac{(11 + 0.45) \times 0.45}{10 - (1 + 0.45)^2} = 0.65$$

k =
$$0.5 + 0.9 \sigma u / \sigma y = 0.5 + 0.9 \times 490 / 355 = 1.74$$

$$\delta$$
 = 1 - n' · d' / w = 1 - 4 × 25 / 400 = 0.75

Necessary base plate thickness

$$t1 = \sqrt{\frac{6 \text{ n}' \cdot \text{By} \cdot \text{Py} \cdot a}{\delta \cdot \text{w} (1+\text{Py}) \text{ k} \cdot \sigma \text{ y}}} = \sqrt{\frac{6 \text{ X} 4 \text{ X} 273 \text{ X} 1000 \text{ X} 0.65 \text{ X} 40}{0.75 \text{ X} 400 \text{ X}(1 + 0.65) \text{ X} 1.74 \text{ X} 355}} = 23.7 \text{ mm}$$

$$t2 = \sqrt{\frac{6 \text{ n}' \cdot \text{By} (b' - a \cdot \text{Py})}{\text{w} (1+\text{Py}) \text{ k} \cdot \sigma \text{ y}}} = \sqrt{\frac{6 \text{ X} 4 \text{ X} 273 \text{ X} 1000 \text{ X}(51.3 - 40 \text{ X} 0.65)}{400 \text{ X}(1 + 0.65) \text{ X} 1.74 \text{ X} 355}} = 20.2 \text{ mm}$$

$$t = 24 \text{ mm} \geq t1 \text{ , } t2$$

(iv) Reduction of allowable sear stress of High Tension Bolt

From Eq 7.3.10 in provision 7.3.7 JRA

$$\rho a = \rho a2 \times (n \times N - T) / (n \times N) = 44443 N$$

 ρ a : Allowable shear force per 1 bolt (N)

a2 :	Allowable bolt force of 1 as a friction connection (N)	54000 N
n :	Total number of bolts at connection part	28 No.
N :	Initial induction axial force of bolt	205000 N
T :	Yensile force applying to connection part (N)	1015884 N

(v) Reinforcement calculation (Calculate at G2 where stiffener distance of main girder is largest inside the girder

Weld at supporting point at reinforcement rib.

Necessary fillet weld leg length

Sreq =
$$588.1 \times 10^3 / (2 \times 0.707 \times 300 \times 204)$$

= $6.8 \text{ mm} \longrightarrow 7 \text{ mm}$

ρ

Reinforcement calculation at supporting point of reinforcement rib.

As the reinforcement rib is the connection structure between diaphragm of end support and vertical stiffener reinforcement calculation of vertical stiffener is verified.

$$SV = P \cdot a / L = 526.4 \text{ kN}$$

 $M_{max} = 157.4 \text{ kN} \cdot m$
 $S_{max} = 439.4 \text{ kN}$

Reinforced section at stiffener

12		(SM490Y)	A (mm ²)	y (mm)	A (mm ³)	$Ay^2 + I(mm^4)$
	1-	100×10	1000	205	205000	42033333
	1-	400×9	3600	-	-	48000000
	1-	288×12	3456	-206	-711936	146700288
			8056		-506936	236733621
↓		e = -62.9				-31872839
		y = 272.9				204860782

σ =	157.4×10^{6}	/	20486	0782×272.9	=	209.7	N/mm^2
				$< 1.7 \times 210$	=	357	N/mm^2
au =	439.4×10^3	/	3600		=	122.1	N/mm^2
				$< 1.7 \times 210$	=	240	N/mm^2
	(209.7)	/ 357	$)^{2} + ($	122.1 / 204)2	=	0.7	
						< 1.2	

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

CHAPTER 9:

DESIGN EXAMPLE OF SEISMIC ISOLATED BRIDGE WITH HIGH DAMPING LAMINATED RUBBER BEARING (HDR)

Chapter 9 Design Example of Seismic Isolated Bridge with High Damping Laminated Rubber Bearing (HDR)

Isolation bearings can be used to design and retrofit bridges to avoid structural damage during the most severe earthquake. The primary goal in a seismic isolation strategy is to decouple a structure from the earthquake ground motions. This strategy has been used for various bridge systems where the inertia effects of the vibrating superstructure are separated from the substructure at the interface between superstructure and substructure. This reduces the forces transmitted to the substructure columns, piers, and foundations. The earthquake energy is absorbed by heat in the isolation bearing that provides protection for the substructure.

This chapter is devoted to the applications of seismic isolation design for bridge structures. Seismic isolation analysis and design of three span bridge has been presented as an example. The used of current Bridge Seismic Design Specification (BSDS, 2013) and the Highway Bridge Seismic Isolation Design Specification (HBSIDS, 2019), the state of the practice and implementation of seismic isolation are discussed. The basic concepts, modeling and analysis methods, design, and evaluation are then explained. A design example is given for illustration purposes.

9.1 Procedure

The analysis and design procedure in this example was presented according to the following steps.

Figure 9.1-1 Seismic Isolation Design General Procedure

- 1. Identification of bridge data includes the following:
 - Bridge properties
 - Seismic Hazard on site
 - Required performance of isolated bridge.
- 2. In the analysis, following shall be defined comprehensively based on the actual condition and parameters:

(MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

- Bridge complete model
- Selection of isolator type and initially design for static condition to have required characteristic strength
- Analysis method to be used.

- 3. After the analysis, verification of the results or response is necessary to obtain the design actions. Followings are the common structural response or actions need to be check:
 - Bearing forces and displacements
 - Hysteretic behavior of bearing isolator
 - Damping of structure
 - Design forces and displacements (for both superstructure and substructures)
 - Check if the required performance is satisfied.
- 4. Finally, after all the bridge target performance has been satisfied, verification of bearing stability according to its required allowable values (i.e allowable stress, allowable strain, etc..) need to be satisfied also, otherwise, iteration is necessary until all the requirements has been satisfied.

9.2 Design Condition of Example Bridge and Seismic Hazard

9.2.1 Description

A three-span continuous prestressed concrete girder bridge with a single column pier is shown in Error! Reference source not found.. This bridge is classified as essential bridge (OC2) and no skewed (regular bridge). The bridge carries two traffic lanes and superstructure width of 10.5 m. Superstructure is made of typical type 5 AASHTO girder spaced at 2.5 m. center-to-center. All columns are supported with 8 cast-in-place 1.2 diameter piles. The rectangular high damping laminated rubber bearing (HDR) are installed between the top of coping and lower end of end-diaphragm.

Figure 9.2-1 General Elevation of Sample Bridge

9.2.2 Seismic hazard

Seven (7) pairs of spectrally matched site-specific acceleration time history ground motion was prepared shown in **Figure 9.2-2**. The site is classified as Type II (Medium). The provisions for the generation of earthquake ground motion for dynamic analysis in Section 4.2 of this guideline referred to BSDS 2013.

Figure 9.2-2 Seven Sets of Site-Specific Acceleration Time History Ground Motions

9.2.3 Required performance of Isolated Bridge

The required seismic performance of bridge as explained in Section 3 of this guidelines. In commentary RBSIDG mention that "Because, a seismic isolation bearing is a member that can absorb the energy of Level 2 Earthquake Ground Motion without being damaged, a seismically isolated bridge has a structural form that is suitable for use as a bridge that needs to be restored quickly after the occurrence of an earthquake". Meaning, that after large earthquake bridge remains at its elastic condition (SPL1), the primary plastic behavior is permissible only at bearing location as shown in **Figure 9.2-3**.

Figure 9.2-3 Permissible Plastic Hinge Location for Seismic Isolated Bridge

9.3 Analysis

Analysis procedure and analytical model was defined in Section 4.3 of this guideline. Two analysis method were recommended to be used in dynamic analysis of bridge: the response spectrum method and time history response analysis method.

9.3.1 Global Analysis Model

In modeling of bridge, Midas Civil 2018 software was utilized as a tool in this example. The bridge was modelled as grillage/3d Finite element model according to its actual geometry and properties as shown in **Figure 9.3-1**.

Figure 9.3-1 3D Bridge Mathematical Model

9.3.1.1 Material Properties

The material properties used for an elastic analysis are usually: modulus of elasticity, shear modulus, Poisson's ratio, the coefficient of thermal expansion, the mass density and the weight density.

9.3.1.2 Loadings

In general, there are two types of loads in bridge design: permanent loads and Transient loads. In this example, permanent load includes: Deadloads including the self-weight of a whole bridge and superimposed dead loads such as railings, wearing surface, etc. and the transient load such as earthquake ground motion.

9.3.1.3 Support Conditions

In these examples, the simplified dynamic analysis model "lumped spring model was adopted during the analysis as explained in Section 4.3.3 in BSDS 2013.

From borehole data at Pier foundation the following average N-value based on soil layer was obtained and the corresponding soil spring stiffness was calculated according to **Figure 9.3-2**.

FOR PIER 1

Layer symbol	Layer type	Layer thickness Li (m)	N- value	Vsi (m/s)	Cv	VsD (m/s)	γt (kN/m3)	G _D (kN/m2)	νD	E _D (kN/m2)
Ac	Clay	12.00	17	257	0.8	205	18.0	77188	0.5	231564
GFW	Clay	1.00	50	292	0.8	233	20.0	110793	0.5	332379

FOR PIER 2

Layer symbol	Layer type	Layer thickness Li (m)	N- value	Vsi (m/s)	Cv	VsD (m/s)	γt (kN/m3)	G _D (kN/m2)	νD	E _D (kN/m2)
Ac	Clay	11.00	15	247	0.8	197	18.0	71281	0.5	213843
GFW	Clay	1.00	50	292	0.8	233	20.0	110793	0.5	332379
GF	Sand	1.00	50	295	0.8	235	20.0	112704	0.5	338112

Pile spring stiffness, P1 Longitudinal/Transverse Direction

Туре	Stiffness	Unit
Ass	3,771,748	(kN/m)
Asr,Ars	-4,774,365	(kN/rad)
Arr	37,961,700	(kN*m/rad)
Avv	3,236,400	(kN/m)
Longitudinal/	Transverse dire	ection
Туре	Stiffness	Unit
Ass	3,519,762	(kN/m)
Asr,Ars	-4,559,278	(kN/rad)
Arr	37,594,500	(kN*m/rad)
Avv	3,236,400	(kN/m)

Figure 9.3-2 Piles Foundation Plan

The computed spring stiffness in this example both directions are same since the configuration of pile foundation as well as the number of piles is the same as shown in **Figure 9.3-3**.

Consideration	of c	off di	iagonal	spring	stiffness	(Asr,	Ars)	was	also	employed	in	modelling	of	spring
foundation.														

General S	pring Type (Co	oupled 6 x 6 Sp	ring)			×	
Name :	PIER 1		1				
- Input l	Method						
	Stiffness Matrix Mass Matrix Damping Matrix						
Stiffness							
	SDx	SDy	SDz	SRx	SRy	SRz	
SDx	3.77175e+0	0	0	0	-4.77437e+(0	
SDy	0	3.77175e+0	0	4.77437e+0	0	0	
SDz	0	0	3.2364e+00	0	0	0	
SRx	0	4.77437e+0	0	3.79617e+0	0	0	
SRy	-4.77437e+(0	0	0	3.79617e+0	0	
SRz	SRz 0 0		0 0		0	1e+007	
General S	pring Type (Co	unled 6 x 6 Spr	ring)				
serier of	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	apica o x o opi				~	
Name :	PIER 2						
- Input N	1ethod						
⊠ S	tiffness Matrix	Mass M	latrix	Damping Matrix	c		
Stiffnes	ss						
	SDx	SDy	SDz	SRx	SRy	SRz	
SDx	3.51976e+0	0	0	0	-4.55928e+(0	
SDy	0	3.51976e+0	0	4.55928e+0	0	0	
SDz	0	0	3.2364e+00	0	0	0	
SRx	0	4.55928e+0	0	3.75945e+0	0	0	
SRy	-4.55928e+(0	0	0	3.75944e+0	0	
SRz	0	0	0	0	0	1e+007	

Figure 9.3-3 Soil Spring Stiffness Input in Midas Civil

9.3.2 Bearings (HDR)

High damping laminated rubber bearing (**Figure 9.3-4**) is a seismic isolation bearing using the rubber material imparting damping property to the rubber itself. Therefore, it functions as the seismic isolation bearing which combines the horizontal spring characteristics which generates the restoring force by rubber itself and the history damping performance for energy absorption.

Figure 9.3-4 High Damping Laminated Rubber Bearing (HDR)

9.3.4 Mechanical Properties of HDR

In this example, G8 type rubber were chosen as given in Table 5.7.1 of this guideline. Breaking elongation of this type is 550% and Shear elastic modulus of 0.8 MPa. The allowable values to be used for the design as given in the following table:

	Туре	Allowable value	
	Maximum	$6 \leq S_1 < 8$	$\sigma_{\text{max}a} = 8.0 \text{ (N/mm^2)}$
	Compressive	$8 \leq S_1 < 12$	$\sigma_{\text{max}a} = S_1 \text{ (N/mm^2)}$
Compressive	Stress	$12 \leq S_1$	$\sigma_{maxa} = 12.0 \ (N/mm^2)$
Stress	Amplitude of	$6 \leq S_1 < 8$	$\Delta \sigma_a = 5.0 \; (\text{N/mm}^2)$
	Stress	9 - C	$\Delta \sigma_a = 5.0 + 0.375 \text{ x} (\text{S}_1 - 8.0) (\text{N/mm}^2)$
	50055	0 <u>≤</u> 3]	Maximum: 6.5 (N/mm ²)
	Normal Condition		$\gamma_{sa} = 70(\%)$
Shear Strain	Wind Condition		$\gamma_{wa} = 120(\%)$
	Seismic Condition	(Level 2)	$\gamma_{ea} = 200(\%)$
			$\gamma_{ta} = \gamma_u / f_a$
Local Shear	Illtimate Local She	ar Strain	γ_u : Breaking elongation shown in
Strain			Error! Reference source not found.
			$f_a: 1.5$
	Normal Condition		$\sigma_{ta} = 0 \text{ (N/mm^2)}$
Tancila	Wind Condition	G8	$\sigma_{ta} = 1.2 \text{ (N/mm^2)}$
Stress	wind Condition	G10 and above	$\sigma_{ta} = 1.5 \text{ (N/mm^2)}$
50055	Solution	G8	$\sigma_{ta} = 1.6 \text{ (N/mm^2)}$
	Seisine Condition	G10 and above	$\sigma_{ta} = 2.0 \text{ (N/mm^2)}$

Table 9.3-1 Allowable Value of Rubber Material

Note) S₁: Primary shape factor of laminated rubber bearing calculated by Equation 6.2.5 BSDS

9.3.5 Dynamic Characteristics of HDR

The nonlinear historical characteristics of HDR was modeled by the bilinear model as shown in **Figure 9.3-6**, and the primary stiffness, secondary stiffness and yield load in the bilinear model was calculated according to Chapter 8.2 of this guideline.

In order to determine the initial characteristics of rubber bearing iterative solutions is required.

 Determination Initial Characteristics of HDR (First Iteration) The first step is to choose the type of rubber to be use and compute for the bearing reaction, R_{max} based on service condition. In this example, rectangular shape has been chosen. - Calculation of bearing reaction:

For the Abutment bearing:

$R_{dl} = 730 \text{ kN}$	(Total deadload reaction at single bearing support at the abutment)
$R_{11} = 225 \text{ kN}$	(Governing max. live load reaction at single bearing support at the abutment)
$\mathbf{R}_{\max} = 955 \text{ kN}$	(Total reaction at a single bearing support at the abutment)

For the Pier bearing:

$R_{dl} = 1460 \text{ kN}$	(Total deadload reaction at single bearing support at Pier)
<u>$R_{11} = 450 \ kN$</u>	(Governing max. live load reaction at single bearing support at Pier)
$\mathbf{R}_{\max} = 1910 \text{ kN}$	(Total reaction at a single bearing support at Pier)

- Determination of Initial dimension

Initially, obtain the reasonable section by setting the allowable compressive strength equal to actual compressive stress. However, shape factor S_1 is necessary in able to define σ_{maxa} in **Table 9.3-1** and S_1 also can be determine by means of section properties of rubber bearing. So from here, assumptions may be required and a few iterations may be necessary.

Assume $S_1 > 12$, so $\sigma_{max} = 12 \text{ N/mm}^2$

$$\sigma_{max} = \frac{R_{max}}{A_e} = \sigma_{maxa} \tag{HBSIDS Eq. 6.3.1}$$

 $A_e = \frac{(1910*1000)}{12} = 159,167 mm2$ Say 400 x 400 mm (a = 400 mm, b= 400 mm)

(Effective Compression Area)

- Estimation of rubber layer thickness, Ae

To estimate the rubber thickness estimation of structure displacement may be required. In AASHTO guidelines for seismic Isolation section 7.1 simplified method has been used to estimate displacement of rubber bearing.

$$d = \left(\frac{g}{4\pi^2}\right) \left(\frac{S_{Dl}T_{eff}}{B_L}\right)$$
(GSID C7.1)

Where:

$$B_L = \left(\frac{\xi}{0.05}\right)^{0.3}$$

d is the estimated structure displacement. One way to make this estimate is to assume the effective isolation period, Teff = 2.0 sec., take the viscous damping ratio to be 5% and calculate the displacement.

Then;

 $\sum t_e = \frac{175*2}{2} = 175 \text{ mm}$

$$d = 0.25S_{D1}$$
 (m)
 $d = 0.25 \times 0.698 = 0.175m$ (175 mm)
Setting $\gamma_s \leq \gamma_{sa}$, Design shear strain is equal to allowable shear strain in Table 1.2.1.

$$\gamma_{sa=} 200\%$$
 (Earthquake Condition)
 $\gamma_{ea} = \frac{d}{\Sigma t_e}$ (HBSIDS Eq. 6.3.29)

(Estimated displacement of rubber bearing)

Try 12 mm thickness of rubber layer and 3.2mm thick of steel plate

Say 12 layers of rubber and 11 layers of steel plate in between rubber layer Initial thickness of HDR, $\sum t_e = 179.2 \text{ mm}$ The Properties of HDR for first trial: Type: G8 a =400 mm, b= 400mm Thickness = 179.2 mm

At Pier Bearing using the same procedure assuming the same thickness as the abutment bearing obtained:

Try 600 x 600 mm HDR at pier location

- Determination of Characteristics of HDR

Characteristics of HDR including the primary and secondary stiffness in this example are based on its actual testing, the coefficient used according to Tables given in this guideline.

Calculation of Primary Stiffness for abutment bearings: The primary stiffness, K1 of HDR was calculated using the equation below

$$K_1 = \frac{G_1(\gamma_{uB}) \cdot A_e}{\Sigma t_e}$$
(HBSIDS Eq. 8.2.1)

Where:

$$G_1(\gamma_{uB}) = a_0 + a_1 \cdot \gamma_{uB} + a_2 \cdot \gamma_{uB}^2 + \cdot \cdot + a_i \cdot \gamma_{uB}^i \qquad (\text{HBSIDS Eq. 8.2.5})$$

The coefficient, α_i of HDR are given in Table 8.2.1 of this guideline.

For HDR G8 Rubber: $\alpha_0 = 13.606$, $\alpha_1 = -14.281$, $\alpha_2 = 8.7294$, $\alpha_3 = -2.1797$, $\alpha_4 = 0.20376$

$$\gamma_{uB} = \frac{175}{179.2} = 0.98$$

 $G_1(\gamma_{uB}) = 13.606 + (-14.281) * .98 + 8.7294 * .98^2 + (-2.1797) * .98^3 + 0.20376 * .98^4 = 6.13$ Ae = 160000 mm^2

Therefore:

$$K_1 = 6.13 \frac{N}{mm^2} * \frac{160000mm^2}{179.2mm} = 5318.5 \ kN/m$$
 Primary stiffness

The primary stiffness, K2 of HDR was calculated using the equation below:

$$K_2 = \frac{G_2(\gamma_{uB}) \cdot A_e}{\sum t_e}$$
(HBSIDS Eq. 8.2.2)

$$G_2(\gamma_{uB}) = b_0 + b_1 \cdot \gamma_{uB} + b_2 \cdot \gamma_{uB}^2 + \cdot \cdot + b_i \cdot \gamma_{uB}^i \qquad (\text{HBSIDS Eq. 3.6})$$

The coefficient, b_i of HDR are given in Table 8.2.2 of this guideline. For HDR G8 Rubber: $b_0 = 1.5104$, $b_1 = -1.5854$, $b_2 = 0.96921$, $b_3 = -0.24207$, $b_4 = 0.02264$

$$\begin{aligned} G_2(\gamma_{uB}) &= 1.5104 + -1.5854 * .98 + 0.96921 * .98^2 + -0.24207 * .98^3 + 0.02264 * .98^4 \\ &= 0.68N/mm^2 \end{aligned}$$

$$K_2 = 0.68 * \frac{160000}{179.2} = 608 \ kN/m$$
 Secondary Stiffness

Calculation of yield load, Qy of HDR bearing.

$$Q_y = \tau_y \cdot A_e \tag{HBSIDS Eq. 3.3}$$

Where:

 $\tau_d(\gamma_{uB})$: Yield stress intensity of HDR

$$\tau_d(\gamma_{uB}) = \gamma_{uB}[G_e(\gamma_{uB}) - G_2(\gamma_{uB})]$$
(HBSIDS Eq. 8.2.8)

$$G_e(\gamma_{uB}) = c_0 + c_1 \cdot \gamma_{uB} + c_2 \cdot \gamma_{uB}^2 + \cdots + c_i \cdot \gamma_{uB}^i$$
(HBSIDS Eq. 8.2.7)

Coefficient c_1 is according to Table 8.2.3 (HDR is i=4)

For HDR G8 Rubber: $c_0 = 2.3686$, $c_1 = -2.7376$, $c_2 = 1.7359$, $c_3 = -0.47343$, $c_4 = 0.0048822$

$$\begin{aligned} G_e(\gamma_{uB}) &= 2.3686 + -2.7376 * .98 + 1.7359 * .98^2 + -0.47343 * .98^3 + 0.004882 * .98^4 \\ &= 0.912 N/mm^2 \end{aligned}$$

And

$$\begin{aligned} \tau_d(\gamma_{uB}) &= .98 * (.912 - .68) = .227 \dots \text{Shear stress intensity} \\ \tau_y(\gamma_{uB}) &= \frac{G_1(\gamma_{uB})}{G_1(\gamma_{uB}) - G_2(\gamma_{uB})} \tau_d(\gamma_{uB}) = \frac{6.13}{6.13 - .68} * .227 = .255 \\ Q_y &= \tau_y \cdot A_e = .255 * \frac{16000}{1000} = 41.032 \ kN \text{ ..Yielding force} \end{aligned}$$

The equivalent stiffness K_B and equivalent damping constant h_B of high damping laminated rubber bearing when modeling by the equivalent linear method shall be calculated by Equation (C8.2.1) and Equation (C8.2.3) of this guideline, respectively.

$$K_B = \frac{G_e(\gamma_{uB}) \cdot A_e}{\Sigma t_e}$$
(HBSIDS Eq. 8.2.1)

$$K_B = .912 * \frac{160000}{179.2} = 816 \ kN/m \quad \dots \quad \text{Equivalent Stiffness}$$

$$h_B(\gamma_{uB}) = d_0 + d_1 \cdot \gamma_{uB} + d_2 \cdot \gamma_{uB}^2 + \cdots + d_i \cdot \gamma_{uB}^i$$
(HBSIDS Eq. 8.2.3)

Coefficient d_i is according to Table C8.2.1 (HDR is i=2) For HDR G8 Rubber: $d_0 = 0.21615$, $d_1 = -0.047991$, $d_2 = 0.0045171$

$$h_B(\gamma_{uB}) = .21615 + -.047991 * .98 + .0045171 * .98^2 = 0.173.....Equivalent Damping Constant$$

Stiffness ratio, r = K2/K1 = 0.114

For the bearing at Pier doing the same procedure, obtained the following results:

K1 = 11,966.67 kN/m

$$\begin{split} & \text{K2} = 1369.3 \text{ kN/m} \\ & \text{Stiffness ratio, r} = 0.114 \\ & \text{Yielding Force, Qy} = 92.32 \text{ kN} \\ & \text{Equivalent Stiffness, K}_{\text{B}} = 1836.5 \text{ kN/m} \\ & \text{Equivalent damping constant, hb} = .1735 \end{split}$$

Characteristics of Vertical Spring (Compression Spring Constant) of HDR.

$$K_{\nu} = \frac{EA_{e}}{\Sigma t_{e}}$$
(HBSIDS Eq. 6.2.3)

Where:

$$E = \alpha \cdot \beta \cdot S_1 \cdot G_e \tag{HBSIDS Eq. 6.2.3}$$

E is the Longitudinal modulus of rubber bearing. α = 45 is the coefficient according to type Table 6.2.1 of this guideline. β = 1.0 is the coefficient according to planar shape Table 6.2.1 of this guideline. Then,

$$E = \alpha \cdot \beta \cdot S_1 \cdot G_e = 45 * 1 * 8.33 * 0.8 = 300 N/mm^2$$

Therefore:

$$K_{v} = \frac{EA_{e}}{\Sigma t_{e}} = 300 * \frac{160000}{179.2} = 267857 \text{ kN/m}$$
 For the Abutment Bearing
Kv = 904017 kN/m For Pier Bearing

The summary of initial Characteristics of HDR are shown in **Table 9.3-2** below. Those values, will be used in the analysis as the initial input for the in modeling linear and non-linear characteristics of HDR bearing.

Abutment (LRB-A)						
Vertical	Longitudinal	Transverse				
Dz	Dx	Dy				
No	Yes	Yes				
Linear Propert	ies					
267857.14	816.2	816.2				
0.174	0.174	0.174				
Non-Linear Prop	erties					
-	5318.5	5318.5				
-	41032	41032				
-	0.114	0.114				
Pier (LRB-P)						
Da						
	DX Vac	Dy Vac				
INO	res	res				
Linear Properties						
	100 4 5	10255				
904017.86	1836.5	1836.5				
<u>904017.86</u> 0.174	1836.5 0.174	1836.5 0.174				
904017.86 0.174 Non-Linear Prop	1836.5 0.174 erties	1836.5 0.174				
904017.86 0.174 Non-Linear Prope	1836.5 0.174 erties 11966.6	1836.5 0.174 11966.6				
904017.86 0.174 Non-Linear Prope - -	1836.5 0.174 erties 11966.6 92322	1836.5 0.174 11966.6 92322				
	Vertical Dz No Linear Propert 267857.14 0.174 Non-Linear Propert - - - - Vertical Dz No Linear Propert	Vertical Longitudinal Dz Dx No Yes Linear Properties 267857.14 267857.14 816.2 0.174 0.174 Non-Linear Properties - - 5318.5 - 41032 - 0.114 Vertical Longitudinal Dz Dx No Yes No Yes				

Table 9.3-2 Characteristics of High Damping Rubber (G8) Bearing (Initial Input Value)

9.3.6 Analysis Method

Since most of the isolation systems are non-linear, it might appear at first sight that only non-linear analysis methods can be used in the design (such as Non-linear time history method). However, if the non-linear can be linearized, equivalent linear (elastic) methods may be used, in which case many methods are suitable for isolated bridges. These methods include:

- Uniform load Method
- Single Mode Spectral method
- Multi-mode Spectral method
- Time-History method

The first three method are elastic methods. The time history method may be either elastic or inelastic. It is required to use for complex structures or where explicit modeling of energy dissipation is required top better represent isolation systems with high level of hysteretic damping. A variation of simplified method such as Uniform load method (ULM) is the displacement-based method of analysis which is particularly useful for performing initial designs and checking the feasibility of isolation for a particular bridge. It may be used as a starting point in design, followed by more rigorous methods as the design progresses.

The Multi-Mode Spectral method as the minimum requirements recommended by this guideline for equivalent linear analysis is the same as specified in the LRFD BSDS (2013) and LRFD Seismic Guide (2011) using the 5% damping ground motion response spectra with the following modifications:

- 1. The isolation bearings are represented by their effective stiffness values.
- 2. The response spectrum is modified to incorporate the effect of higher damping of the isolated system. This results in a reduction of the response spectra values for the isolated modes. For all the other modes, the 5% damping response spectra should be used.
- 3. A typical modified response spectrum is shown in Figure 9.3-5.

Figure 9.3-5 Modified Design Response Spectrum for Isolated Bridge (Chen Et Al. 2014)

However, using equivalent linear method, the actual behavior of bearing cannot be defined explicitly and the comparison from the actual load test maybe rough. In this example, time history analysis by modal superposition was performed using Midas Civil 2018 as an analysis tool. Sensitivity of the analysis has been explained including the HDR characteristics and hysteretic model and parameters.

Non-linear analysis has been performed by applying non-linear characteristics of bearing. This analysis method is called the "Boundary Non-linear time history analysis". Boundary nonlinear time history analysis, being one of nonlinear time history analyses, can be applied to a structure, which has limited nonlinearity. The nonlinearity of the structure is modeled through General Link of Force Type, and the remainder of the structure is modeled linear elastically. Boundary nonlinear time history analysis is analyzed by converting the member forces of the nonlinear system into loads acting in the linear system. Because a linear system is analyzed through modal superposition, this approach has an advantage of fast analysis speed compared to the method of direct integration, which solves equilibrium equations for the entire structure at every time step. The equation of motion for a structure, which contains General Link elements of Force Type, is as follows:

$$M\ddot{u}(t) + C\dot{u}(t) + (K_s + K_n)u(t) = B_n p(t) + B_N (f_L(t) - f_N(t))$$
 (Equation 1.2.1)

Where:

- M : Mass Matrix
- C : Damping Matrix
- K_s : Elastic Stiffness without General Link element of Force type
- K_N : Elastic Stiffness of General Link element of Force type

 $\mathbf{B}_{P}, \mathbf{B}_{N}$: Transformation Matrix

u(t), $\dot{u}(t)$, $\ddot{u}(t)$: Nodal displacement, velocity, and acceleration

- p(t) : Dynamic load
- $f_L(t)$: Internal forces due to effective stiffness of non-linear components contained in general link elements of force type
- $f_N(t)$: True internal forces of non-linear components contained in general link

9.3.6.1 Energy Dissipation

Although the low horizontal stiffness of seismic isolators leads to reduced seismic forces, it may result in larger superstructure displacements. Wider expansion joints and increased seat lengths maybe required to accommodate these displacements. As a consequence, most isolation systems include the energy dissipation mechanism to introduced a significant level of damping into the bridge to limit these displacements to acceptable levels. These mechanisms are frequently hysteretic in nature, which means that there is an offset between the loading and the unloading force-displacement curves under reverse (cyclic) loading. Energy, which is not recovered during unloading, is mainly dissipated as heat from the system. Following Figure shows a bilinear force-displacement relationship for a typical seismic isolator that includes an energy dissipater. The hatched under the curve is the energy dissipated during each cycle of motion of the isolator.

Figure 9.3-6 Billinear Hysteresis Loop (Aashto 1999)

Q_d	=	Characteristic strength
F_y	=	Yield force
F _{max}	=	Maximum force
K_d	=	Post-elastic stiffness
K_u	=	Elastic (unloading) stiffness
$K_{e\!f\!f}$	=	Effective stiffness
Δ_{max}	=	Maximum bearing displacement
EDC	=	Energy dissipated per cycle = Area of hysteresis loop (shaded)

Analytical tools for these non-linear systems are available using inelastic time history structural analysis software packages. But these tools can be unwieldly use and not always suitable for routine design office use. Simplified methods such as equivalent linear analysis has therefore been developed which use effective elastic properties and an equivalent viscous dashpot to represent the energy dissipation. The effective stiffness, K_e and effective damping constant, h_b in Error! Reference source not found. has been used.

9.3.6.2 Hysteretic System

There are several hysteresis models in modeling the dynamic behavior of high damp rubber that was developed in past years e.g Bouc-Wen model (Wen, 1976) that was developed by Tsai Model (Tsai et al, 2003), Huang Model (Huang et al, 2002) and many more, until now many researchers are still developing and modifying the model of characteristics of high damp rubber bearing. Tsai et al. recently proposed a force -displacement model for HDR bearings based on the Bouc-Wen hysteretic model. The tangent stiffness in the bilinear curve, D (Tsai et al. 2003) may be expressed as:

$$D = \gamma K + (1 - \gamma) K \left[A - \left(\alpha \operatorname{sgn} \left(\dot{U} Z \right) + \beta \right) Z^2 \right]$$
 (Equation 1.2.2)

Where A, α , β , are material constants; recommended values are 1.0, 0.1, 0.9, respectively according to Tsopelas et al., 1994 for modeling HDR. The terms K and Y are the initial stiffness and plastic stiffness ratio, respectively. To verify the tools capability of performing such hysteresis model, in Midas technical manual, and accordingly, the following Equation 1.2.3 were verified.

Hysteretic system based on Wen model consists of 6 independent components having the properties of Uniaxial Plasticity. The system is used to model Energy Dissipation Device through hysteretic behavior. The force-deformation relationship of Hysteretic System by components is as follows:

$$f = r \cdot k \cdot d + (1 - r) \cdot F_{y} \cdot z \qquad (Equation 1.2.3)$$

Where:

k : Initial Stiffness

- F_v : Yield Strength
- *r* : Post-yield stiffness reduction
- d: Deformation between two nodes
- z: Internal variable for hysteretic behavior

z is an internal hysteretic variable, whose absolute value ranges from 0 to 1. The dynamic behavior of the variable z was proposed by Wen (1976) and defined by the following differential equation:

$$\dot{z} = \frac{k}{F_{y}} \left[1 - |z|^{s} \left\{ \alpha \operatorname{sgn}(\dot{d}z) + \beta \right\} \right] \dot{d}$$
 (Equation 1.2.4)

Where:

 α,β : Parameters determining the shape of hysteretic curve

- s : Parameters determining the magnitude of the yield strength transition region
- \dot{d} : Rate of change in deformation between two nodes

 α and β are the parameters determining the post-yield behavior. $\alpha+\beta>0$ signifies Softening System, and $\alpha+\beta<0$ signifies Hardening System. The energy dissipation due to hysteretic behavior increases with the increase in the closed area confined by the hysteretic curve. In the case of Softening System, it increases with the decrease in the value of ($\beta-\alpha$). The change of hysteretic behavior due to the variation of α and β is illustrated in **Figure 9.3-7**. s is an exponent determining the sharpness of the hysteretic curve in the transition region between elastic deformation and plastic deformation, i.e. in the region of yield strength. The larger the value, the more distinct the point of yield strength becomes and the closer it is to the ideal Bi-linear Elasto-plastic System. The change of the transition region due to s is illustrated in **Figure 9.3-8**.

Figure 9.3-7 Force-Deformation Relationship Due to Hysteretic Behavior (R = 0, K = Fy = S = 1.0)

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

9.3.7 Practical Modeling and Analysis

Example bridge mathematical model considering the non-linear boundary element as shown in **Figure 9.3-9**.

Figure 9.3-9 Example Bridge Mathematical Model

9.3.7.1 Time History Analysis Application

The bridge was modeled according to its actual condition and configuration, considering the target performance according to Chapter 9.1.3 of this guideline. In this example the bridge is classified as Essential bridge or OC2 in which the minimum performance level requirements is SPL2 *or Limited damage for function recovery*, however since the isolation has been applied, we expect much higher performance and the target performance of this bridge is now SPL 1 or *Damage prevention*. Meaning, No structural damage during level 2 earthquake, the behavior of pier still at elastic range. In short, the bridges are expected to perform its normal function or be open to all traffic under level 2 earthquake.

Considering the performance requirements, in these examples, all elements of the bridge was modeled as linear/elastic except that for bearing which is non-linear boundary elements. The bearing support was modeled as a non-linear hysteretic system as explained in Chapter 9.2.3.2 of this guideline.

Add/Modi	ify General l	Link Properties				×	Hysteretic System Type Nonlinear Spring X	
Name		HDR-P					Nonlinear Properties	
Descriptio	on :	HIGHDAMP RUBBER BEARING					Stiffness (k) : 11966 kN/m	
					Yield Strength (Fy) : 92.3 kN			
O Element Type 1 O Element Type 1					Post Yield Stiffness Ratio (r) : 0.114			
Property Type 1 Hydraratic System Y Toplactic Hinne Droperties					Yielding Exponent (s) : 1			
OF	ement Type 2	2 : Seismic Contro	ol Devices		1100000	ininge i roper debiti	Hysteretic Loop Parameter (a) : 0.9	
024	ciemic Contro			Viscous Damper / Oil D	emper	~	Hysteretic Loop Parameter (b) : 0.1	
	eismic Contro	al Devices Type	·	viscous bamper / oir b	amper		a : alpha b : beta a + b = 1.0	
5	eismie contro	or Devices Proper	ues :			×		
Self We	ight			Use Mass				
Tota	l Weight :	0	kN	Total Mass :	0	kN/g		
Lump	oed Weight R	latio:		Lumped Mas	s Ratio:		$\mathbf{f} = \mathbf{r} \cdot \mathbf{k} \cdot \mathbf{d} + (1 - \mathbf{r}) \mathbf{E} \cdot \mathbf{z}$	
I-end	d:J-end =	0.5 :	0.5	I-end : J-end	d = 0.5	: 0.5		
Linear	henerties				Manliner	n Dranastian	$\dot{\mathbf{z}} = \frac{\mathbf{K}}{\mathbf{F}_{\mathbf{y}}} \left[1 - \mathbf{z} ^{2} \left\{ \alpha \cdot \operatorname{sign}\left(\mathbf{d} \cdot \mathbf{z} \right) + \beta \right\} \right] \mathbf{d}$	
DOF	Effective S	Stiffness	Effective	Damping	DOF	i rioperues		
Dx	11966	kN/m	0	kN*sec/m		Properties		
⊡Dy	1836.5	kN/m	0	kN*sec/m	 ⊡ Þy	Properties>>	f f	
✓ Dz	1836.5	kN/m	0	kN*sec/m	∠ Dz	Properties	N1 N2	
Rx	0	kN*m/[rad]	0	kN*m*sec/[rad]	Rx	Properties		
Ry	0	kN*m/[rad]	0	kN*m*sec/[rad]	Ry	Properties	f <u>s=0</u>	
Rz	0	kN*m/[rad]	0	kN*m*sec/[rad]	Rz	Properties	F. I K	
	De	escription		Coupled				
Sh	ear Spring Lo	cation						
Distance Ratio From End I Dy: 0.5 Dz: 0.5				0.5	OK Cancel			
				OK	(Cancel Apply		
							♦	

Figure 9.3-10 Sample Bearing Input Parameters for Hysteretic System

9.4 Design Seismic Forces for Verification of Bearing Support

9.4.1 Design Seismic force for verification of bearing support

The design seismic force for verification of bearing was explained in Section 5.4 of this guideline. The downward and upward design vertical seismic forces of the bearing supports shall be calculated from HBSIDS Equation 5.4.1 and 5.4.2, respectively.

$$R_{L} = R_{D} + \sqrt{R_{HEQ}^{2} + R_{VEQ}^{2}}$$
(HBSIDS Eq. 5.4.1)

$$R_{U} = R_{D} - \sqrt{R_{HEQ}^{2} + R_{VEQ}^{2}}$$
(HBSIDS Eq. 5.4.2)

Where,

- R_L : Downward seismic force used for seismic design of bearing support (kN)
- R_U : Upward seismic force used for seismic design of bearing support (kN)
- R_D : Reaction force generated at the bearing supports by the dead load of the superstructure (kN).

 R_{HEQ} : Horizontal reaction force (kN) generated at the bearing supports.

 R_{VEQ} : Vertical seismic force (kN) generated by the design vertical seismic coefficient kv which is obtained from the following Equation.

$$R_{VEO} = \pm k_V R_D$$

(HBSIDS Eq. 5.4.3)

 k_v : Design vertical seismic coefficient; it is obtained by multiplying the design horizontal seismic coefficient on the ground surface by a factor specified in RBSIDG 5.4.1 the design horizontal seismic coefficient for Level 1 Earthquake Ground Motion is specified in Clause 3.6 and Appendix 3A in BSDS, and the design horizontal seismic coefficient for Level 2 Earthquake Ground Motion is specified in Clause 3.6 and Appendix 3B in BSDS.

From RBSIDG Table 5.4.1 Multiplying coefficient for the design horizontal coefficient for Level 2 EQ Type 2 ground is 0.67.

Then, $k_v = \gamma \text{Fpga} = 0.67 * 0.883 = 0.5916$

Where: Fpga = 0.881 (Calculated from given hazard Map)

The vertical and horizontal seismic forces for the verification of bearing explained in RBSIDG C5.4 as shown in **Figure 9.4-1**.

Figure 9.4-1 Vertical Reaction Force R_{heq} Generated in Bearing Support Due to Horizontal Seismic Force & Vertical Reaction Force R_{veq} Generated in Bearing Support Due to Vertical Seismic Force

(HBSIDS Eq. 5.4.2)

Where:

 $R_{HEQi} = \frac{H_B h_s}{\sum x_i^2} x_i$

$$H_B h_s = \sum \left(R_{HEQi} x_i \right)$$

$$\sum R_{HEQi} = 0$$

$$R_{HEQi} = K (x_i - x_0)$$

(HBSIDS Eq. 5.4.1)

Where,

- R_{HEQi} : Reaction force generated in the i-th bearing supports when the design horizontal seismic force acts in the transverse direction to bridge axis (kN)
- H_B : Design horizontal seismic force of bearing support specified in (1) and (2) RBSIDG C5.4
- h_s : Veltical distance from the bearing seat surface to the gravity center of the superstructure (m). The maximum value of h_s on the bearing support line shall be used, when there is a level difference in the seat surfaces on one bearing support line.
| 21 | | BSDS DESIGN STANDARD GUIDE MANUAL |
|-----------------------|---|---|
| x _i | : | Horizontal distance from the gravity center of the superstructure to the i-th bearing support. Both positive and negative values shall be considered. |
| K | : | A coefficient representing a proportional relationship. It can be obtained from RBSIDG Equation (C5.4.1). |
| <i>x</i> ₀ | : | Distance from the balancing point of R_{HEQi} to the center of gravity (m). However, it becomes 0 when the center of gravity is in the center of the symmetrical section in the |

Thus, for the example bridge given the dimension, using Equation 5.4.2 R_{HEQ} was computed as shown in table below

No.	x _i (m)	Xi ²	Xo	R _{HFOI} (kN)	No.	x _i (m)	x_i^2	X ₀	R _{HEQi} (kN)
1	5	25	0	119 9110629	1	5	25	0	110.14704
2	25	6.25	0	59 95553143	2	2.5	6.25	0	55.07352
2	2.5	6.25	0	50.05552142	3	-2.5	6.25	0	-55.07352
5	-2.3	0.23	0	39.93333143	5	2.0	0.20	Ŭ	00101002
4	-5	25	0	119.9110629	4	-5	25	0	-110.14704

Computed the bearing reaction due to total superstructure weight, $R_D = 1461.75$ kN Then the vertical seismic force, $R_{VEQ} = 0.5916*1461.75 = 864.77$ kN

transverse direction to bridge axis.

From Equation 5.4.1 and 5.4.2 the Design downward and upward bearing forces for verification of bearing was obtained:

PIER BEAR	ING FORCE		ABUTMENT BE	EARING FORCE
R _L (kN)	R _U (kN)		R _L (kN)	R _U (kN)
2335.133126	588.3668742		1177.234973	284.5150267
2328.937458	594.5625421		1166.923103	294.8268972
2328.937458	594.5625421		1166.923103	294.8268972
2335.133126	588.3668742		1177.234973	284.5150267

9.4.2 Verification of Analysis Output

Based on the results of the analysis from the initial bearing model (First iteration), the results would be as follows:

 Fundamental modes of the bridge 1st Mode (Longitudinal Direction) Period, Tn (secs) = 2.128 secs.

 2^{nd} Mode (Transverse Direction) Period, Tn = 1.0 sec.

🛯 | 📊

Figure 9.4-2 Fundamental Modes of Bridge

(2) Verification of Bearing Displacement

At Pier Bearing, the mean response of each bearing due to seven (7) input ground motion.

EQ1X(max)	0.161837	0.065103	6.2E-05	1.8E-05	-0.004323	0.00133
EQ2X(max)	0.132388	0.061618	0.000103	2.9E-05	-0.004526	0.001499
EQ3X(max)	0.147581	0.080256	7.4E-05	2.1E-05	-0.004708	0.001512
EQ4X(max)	0.134333	0.07727	0.00011	2.9E-05	-0.003345	0.001151
EQ5X(max)	0.15311	0.084072	0.000109	2.9E-05	-0.004973	0.001607
EQ6X(max)	0.126706	0.071961	0.000259	7.1E-05	-0.00307	0.001403
EQ7X(max)	0.162262	0.078688	0.000446	0.000115	-0.004998	0.001546
Mean	0.16205	0.0718955	0.000254	6.65E-05	-0.004661	0.001438

For example, at Bearing 1 at Pier:

Then the design isolation displacement = 162 mm

Same for the abutment bearings:

EQ1(max)	0.204518	0.000068	0.002986	0.000787	0.000153	0.002633
EQ2(max)	0.189208	0.000066	0.003451	0.000909	0.000115	0.002482
EQ3(max)	0.180622	0.000087	0.003654	0.000972	0.000156	0.003148
EQ4(max)	0.163937	0.000082	0.002622	0.000703	0.000132	0.003222
EQ5(max)	0.188674	0.000094	0.003599	0.000957	0.000191	0.003142
EQ6(max)	0.156008	0.000076	0.003012	0.000796	0.000094	0.002942
EQ7(max)	0.213772	0.000081	0.003698	0.000981	0.000115	0.003066
Mean	0.185248	7.914E-05	0.003289	0.000872	0.0001366	0.002948

And for the abutment bearing, the design displacement is 185 mm

(3) Verification of Superstructure Displacement

Load	DX (m)	DY (m)	DZ (m)	RX (rad)	RY (rad)	RZ (rad)
EQ1(max)	0.20563	0.001402	0.00102	0.00786	0.00149	0.002623
EQ2(max)	0.184656	0.001291	0.001179	0.00909	0.00121	0.002473
EQ3(max)	0.188201	0.001585	0.001228	0.00971	0.00152	0.003136
EQ4(max)	0.166516	0.001718	0.000864	0.00703	0.00127	0.00321
EQ5(max)	0.196613	0.001793	0.00121	0.00957	0.00185	0.003129
EQ6(max)	0.157288	0.001437	0.001025	0.00796	0.00096	0.002932
EQ7(max)	0.214142	0.001602	0.001247	0.00981	0.00113	0.003056
	0.187578	0.0015469	0.00111	0.00872	0.001347	0.002937

Say 188 mm (Displacement of Superstructure)

(4) Design Bearing Horizontal Seismic Force

For Pier Bearing:

Axial	Shear-y	Shear-z
(kN)	(kN)	(kN)
903.1914	832.715714	286.2757143

For Abutment Bearing

Axial	Shear-y	Shear-z
(kN)	(kN)	(kN)
840.6214	764.91	243.022857

9.5 Design of High-Damping Rubber Bearing

In the design of HDR, two performances need to be verified 1. At Normal Condition and 2. During Earthquake.

Initial Bearing Size = 600 x 600 x 179.2 mm (Ae = 360,000).....For Pier Initial Bearing Size = 400 x 400 x 179.2 mm (Ae = 160,000)....For Abutment Rubber type: G8, Ge = 0.8 Mpa Thickness of rubber layer = 12 mm Thickness of steel plate = 3.2 mm

9.5.1 Design of Pier Bearing

(1) At Normal Condition Maximum Compressive stress

$$\sigma_{max} = \frac{R_{max}}{A_{cn}} \le \sigma_{maxa}$$

Shape factor, $S1 = \frac{360000}{2(600 + 600) * 12} = 12.5 > 12$

Therefore: $\sigma_{maxa} = 12 Mpa$ (*Table* 5.7.2)

$$\sigma_{max} = \frac{R_{max}}{A_{cn}} = \frac{Rll + Rdl}{360000} = \frac{(1461.75 + 450.88)kN * 1000N}{360000} = 5.31 Mpa$$
$$\leq \sigma_{maxa}(OKAY)$$

a. Buckling Stability

 $\sigma_{max} \leq \sigma_{cra}$

Where:

$$\sigma_{cra} = \frac{G_e S_1 S_2}{f_{cr}} = \frac{0.8 \times 12.5 \times 3.34}{2.5} = 13.36 \ Mpa > \sigma_{max} = 5.31 \ (OKAY)$$

 f_{cr} : Coefficient considering the frequency of load occurring in laminated rubber bearing which shall be set to **2.5**.

$$S_2 = \frac{\text{shorter length of a or } b}{\sum t_e} = \frac{600}{179.2} = 3.34$$

b. Tensile Stress of Internal plate

$$\sigma_s \leq \sigma_{sa}$$
 where: $\sigma_{sa} = 140 Mpa for SS400, t \leq 40mm$

$$\sigma_s = f_c \cdot \sigma_{max} \cdot \frac{t_e}{t_s} = 2 * \frac{5.31 * 12}{3.2} = 38.9 Mpa < 140 Mpa (OKAY)$$

- Verification of Deformation Performance
- c. Shear Strain

Shear strain caused by horizontal displacement by temperature change at normal condition, creeping of concrete and dry shrinkage were verified.

$$\gamma_s \leq \gamma_{sa}$$

 $\gamma_{sa} = 70\%$ at Normal Condition (Table 5.7.2)

$$\gamma_s = \frac{\Delta L_1}{\sum t_e} = \frac{7}{179.2} = 4\% < 70\% \ (OKAY)$$

 $\Delta L_1 = 7mm$ Design deformation of laminated rubber bearing occurring at normal condition.

d. Rotational Displacement

The rotational displacement caused by the girder deflection by live load were verified.

$$u_r \le \frac{u_c}{f_v} = \frac{7.5}{1.3} = 5.77 > 2.83 \ (OKAY)$$
$$u_r = \frac{a \cdot \sin \theta + b \cdot \cos \theta}{2} \cdot \sum \alpha_e \quad \text{For Rectangular Section}$$

 $\sum \alpha_e = 0.00872$ rad. (See Deformation results)

 $\theta = 0.0872 \, rad.$ (5 Degrees Bevel)

$$u_r = \frac{a \cdot \sin \theta + b \cdot \cos \theta}{2} \cdot \sum \alpha_e = \frac{[600 \sin(.0872) + 600 \cos(.0872)]}{2} * .00872 = 2.83 \text{mm}$$

e. Fatigue Durability

The total of localized shear strain caused by maximum vertical reaction, horizontal traveling amount and rotation were verified.

$$\begin{aligned} \gamma_t &\leq \gamma_{ta} \\ \gamma_t &= \gamma_c + \gamma_s + \gamma_r = .68 + 0.91 + .039 = 163\% < 433\% \ (OKAY) \\ \gamma_c &= 8.5 \cdot S_1 \cdot \frac{R_{max}}{EA_{cn}} = 8.5 * 12.5 * 1912.63 * \frac{1000}{824 * 360000} = 0.68 \\ \gamma_s &= 7/179.2 = .039 \\ \gamma_r &= 2(1 + a/b)^2 \cdot S_1^2 \cdot \alpha_e = 2 * (1 + 1)^2 * 12.5^2 * .00872/12 = 0.91 \end{aligned}$$

 α_e Rotational angle per rubber layer

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

$$E = (3 + 2/3 \cdot \pi^2 \cdot S_1^2)G_e = \left(3 + \frac{2}{3} * \pi^2 * 12.5^2\right)0.8 = 824 Mpa$$
$$\gamma_{ta} = \frac{\gamma_u}{f_a} = \frac{650}{1.5} = 433.33\%$$

Where:

- f_a Safety coefficient of localized shear strain at normal condition, set to which shall be 1.5.
- (2) At the Condition of Earthquake
 - 1. Verification of the Vertical Force Support Function
 - a. Buckling Stability

Buckling stability against downward force during earthquake were verified by Equation below.

$$\sigma_{ce} = \frac{R_L}{A_{ce}} \le \sigma_{cra}$$
 R_L = Downward Seismic force

Where:

$$\sigma_{cra} = \frac{G_e \cdot S_1 \cdot S_2}{f_{cr}} = \frac{0.8 * 12.5 * 3.34}{1.5} = 22.27 Mpa$$
$$\sigma_{ce} = \frac{R_L}{A_{ce}} = 2335 * \frac{1000}{360000} = 6.49 Mpa < 22.27 Mpa \ (OKAY)$$

 f_{cr} : Coefficient considering the frequency of the load occurring in laminated rubber bearing, which shall be set to 1.5.

b. Tensile Stress Intensity

Tensile stress intensity caused by the upward force at the condition of earthquake were verified by Equation below.

 $\sigma_{te} = \frac{R_U}{A_{te}} = 594 * \frac{1000}{360000} = 1.65 MPa > \sigma_{ta} = 1.6Mpa$ Say almost Okay, but section not fully adequate. There are two ways to add the capacity 1. By changing rubber type to G10, the allowable now become 2.0 Mpa and 2. By adding dimension, e.q instead of 600 x 600 mm, say 650 x 650 mm considering 12.5 mm Cover, the effective dimension becomes 625 x 625 mm. The Effective Area, Ae now becomes 390,625 mm².

In this example, the increase of section has been chosen, and since the dimension was change, Re-analysis is required by changing the input bearing parameters to the new one. This is the second iteration, using the same procedure in the previous analysis and design.

 $\sigma_{ta} = 1.6 Mpa \ (Table \ 5.7.2)$

- Verification of Deformation Performance in Horizontal Direction For the horizontal displacement at the condition of earthquake, the shear strain was verified.

$$\begin{split} \gamma_{se} &\leq \gamma_{ea} = 200\% \\ \gamma_{se} &= \frac{u_B}{\sum t_e} = \frac{162}{179.2} = .904 \ or \ 90.4\% < 200\% \ (OKAY) \\ \gamma_{ea} &= \frac{u_a}{\sum t_e} \end{split}$$

 $u_B = 162 mm$ Design displacement of HDR at time of Earthquake

 $u_a = 358.5$ Allowable displacement of HDR at time of EQ.

9.5.2 Design of Abutment Bearing

- (1) At Normal Condition
 - a. Maximum Compressive stress

$$\sigma_{max} = \frac{R_{max}}{A_{cn}} \le \sigma_{maxa}$$

Shape factor,
$$S1 = \frac{160,000}{2(400 + 400) * 12} = 8.33 < 12$$

Therefore: $\sigma_{maxa} = 8.33 Mpa$ (*Table* 5.7.2)

$$\sigma_{max} = \frac{R_{max}}{A_{cn}} = \frac{Rll + Rdl}{160000} = \frac{(730.875 + 225.44)kN * 1000N}{160000} = 5.97 Mpa$$

$$\leq \sigma_{maxa}(OKAY)$$

b. Buckling Stability

$$\sigma_{max} \leq \sigma_{cra}$$

where:

$$\sigma_{cra} = \frac{G_e S_1 S_2}{f_{cr}} = \frac{0.8 * 8.33 * 2.23}{2.5} = 5.94 \ Mpa > \sigma_{max} = 5.31 \ (OKAY)$$

 $f_{cr} =$: Coefficient considering the frequency of load occurring in laminated rubber bearing which shall be set to **2.5**.

$$S_2 = \frac{\text{shorter length of a or } b}{\sum t_e} = \frac{400}{179.2} = 2.23$$

c. Tensile Stress of Internal plate

 $\sigma_s \leq \sigma_{sa}$ where: $\sigma_{sa} = 140 Mpa for SS400, t \leq 40mm$

$$\sigma_s = f_c \cdot \sigma_{max} \cdot \frac{t_e}{t_s} = 2 * \frac{5.97*12}{3.2} = 44.77 Mpa < 140 Mpa (OKAY)$$

- Verification of Deformation Performance
- a. Shear Strain

Shear strain caused by horizontal displacement by temperature change at normal condition, creeping of concrete and dry shrinkage were verified.

$$\gamma_s \leq \gamma_{sa}$$

 $\gamma_{sa} = 70\%$ at Normal Condition (RBSIDG 5.7.2)

$$\gamma_s = \frac{\Delta L_1}{\sum t_e} = \frac{7.5}{179.2} = 4\% < 70\% \ (OKAY)$$

 $\Delta L_1 = 7mm$ Design deformation of laminated rubber bearing occurring at normal condition.

b. Rotational Displacement

The rotational displacement caused by the girder deflection by living load were verified.

$$u_r \le \frac{u_c}{f_v} = \frac{7.5}{1.3} = 5.77 > 2.83 \ (OKAY)$$

 $u_r = \frac{a \cdot \sin \theta + b \cdot \cos \theta}{2} \cdot \sum \alpha_e$ For Rectangular Section

 $\sum \alpha_e = 0.00872$ rad. (See Deformation results)

 $\theta = 0.0872 \, rad.$ (5 Degrees Bevel)

$$u_r = \frac{a \cdot \sin \theta + b \cdot \cos \theta}{2} \cdot \sum \alpha_e = \frac{[600 \sin(.0872) + 600 \cos(.0872)]}{2} * .00872 = 2.83 \text{mm}$$

c. Fatigue Durability

The total of localized shear strain caused by maximum vertical reaction, horizontal traveling amount and rotation were verified.

$$\gamma_t \leq \gamma_{ta}$$

$$\gamma_t = \gamma_c + \gamma_s + \gamma_r = .4 + 1.15 + .039 = 159\% < 433\%$$
 (OKAY)

$$\gamma_c = 8.5 \cdot S_1 \cdot \frac{R_{max}}{EA_{cn}} = 8.5 * 8.33 * 956 * \frac{1000}{367 * 160000} = 1.15$$

$$\gamma_s = 7/179.2 = .039$$

$$\gamma_r = 2(1+a/b)^2 \cdot S_1^2 \cdot \alpha_e = 2*(1+1)^2 * 8.33^2 * .00872/12 = 0.40$$

 α_e Rotational angle per rubber layer

$$E = (3 + 2/3 \cdot \pi^2 \cdot S_1^2)G_e = \left(3 + \frac{2}{3} * \pi^2 * 8.33^2\right)0.8 = 367 Mpa$$
$$\gamma_{ta} = \frac{\gamma_u}{f_a} = \frac{650}{1.5} = 433.33\%$$

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Where:

- f_a Safety coefficient of localized shear strain at normal condition, set to which shall be 1.5.
- (2) At the Condition of Earthquake
 - 1. Verification of the Vertical Force Support Function
 - a. Buckling Stability

Buckling stability against downward force during earthquake were verified using Equation below.

$$\sigma_{ce} = \frac{R_L}{A_{ce}} \le \sigma_{cra}$$
 R_L = Downward Seismic force

Where:

$$\sigma_{cra} = \frac{G_e \cdot S_1 \cdot S_2}{f_{cr}} = \frac{0.8 * 8.33 * 2.23}{1.5} = 9.91 Mpa$$

$$\sigma_{ce} = \frac{R_L}{A_{ce}} = 1177 * \frac{1000}{160000} = 7.35 Mpa < 9.91 Mpa \ (OKAY)$$

 f_{cr} : Coefficient considering the frequency of the load occurring in laminated rubber bearing, which shall be set to 1.5.

b. Tensile Stress Intensity

Tensile stress intensity caused by the upward force at the condition of earthquake were verified by Equation below.

$$\sigma_{te} = \frac{R_U}{A_{te}} = 295 * \frac{1000}{160000} = 1.84 MPa > \sigma_{ta} = 1.6Mpa$$
 NOT Okay,

Bearing Section not adequate. There are two ways to add the capacity 1. By changing rubber type to G10, to be the allowable become 2.0 Mpa and 2. By adding dimension, e.q instead of 400 x 400 mm, Say 450 x 450 mm considering 12.5 mm Cover, the effective dimension becomes 425 x 425 mm. The Effective Area, Ae now becomes 180,625 mm².

In this example, the increased of dimension was choose. Since the dimension was change, Re-analysis is required by changing the input bearing parameters to the new one. This is the second iteration, using the same procedure in the previous analysis and design. $\sigma_{ta} = 1.6Mpa \ (Table \ 5.7.2)$

- Verification of Deformation Performance in Horizontal Direction

For the horizontal displacement at the condition of earthquake, the shear strain were verified.

$$\begin{aligned} \gamma_{se} &\leq \gamma_{ea} = 200\% \\ \gamma_{se} &= \frac{u_B}{\sum t_e} = \frac{187.5}{179.2} = 1.05. \, or \, 105\% < 200\% \, (OKAY) \\ \gamma_{ea} &= \frac{u_a}{\sum t_e} \end{aligned}$$

_ _ _ _

 $u_B = 162 mm$ Design displacement of HDR at time of Earthquake

 $u_a = 358.5$ Allowable displacement of HDR at time of EQ.

9.6 Verification of Bridge Response and Hysteresis of HDR Bearing

9.6.1 Hysteresis Curve of HDR

Following **Figure 9.6-1** shows one of the hysteresis curve of high damp rubber bearing at Abutment in the longitudinal direction due to input earthquake EQx.

Figure 9.6-1 Hysteresis Curve of HDR Bearing (B9)

In Section 8.1 C8.1 of this guideline also shows the shear stress-shear strain hysteresis of HDR bearing obtained from the actual laboratory testing as shown in Figure C8.1.2. In this section also explained that for HDR bearing, the shear stress intensity increases due to hardening effect when the shear strain exceeds 200%. So, it can be observed that since the shear strain in the example above did not exceed 200%, there is no increase in shear stress due to hardening effect.

Figure C8.1.2 Hysteresis Curve of High Damping Rubber (HDR-S) Bearing Based on Actual Load Test

9.6.2 Displacement History of superstructure and Pier

Time history response of displacement of both superstructure and pier were also verified as shown in the following Figures.

Figure 9.6-2 Time History for Superstructure Displacement

Notice the sudden increase of displacement and also the effect of damping. It is also recommended to provide sufficient gap between the edge of the superstructure and the edge of backwall to allow the movement of isolation during large earthquake. The difference between the Earthquake resisting system and Isolated bridge was discussed in Chapter 10 of this manual.

Figure 9.6-3 Sample History of Pier-Top Displacement Due to Eq1x

9.6.3 Verification of Pier Response

The design response of pier was taken as the mean response due to seven (7) set of input ground motions as shown in Table below.

Linear behavior of column during and after earthquake was expected for this isolated bridge example. Secondary plastic behavior which is permitted by this manual at the bottom of the piers is not anticipated in this example. Therefore, moment reduction factor, R set to 1.0 were applied for the elastic response of column. In this case the elastic force due to earthquake were used as a design force as explained in Chapter 9.1.3 of this guideline.

9.6.4 Column Requirements

For the example bridge, following are the requirements for the Pier/ Column. The interaction diagram according the column requirements as shown in **Figure 9.6-5**.

- Required performance Criteria SPL1 (Column is fully elastic)
- Single Round Column
- 2 m (Diameter)
- 76-32 mm Ø Vertical Reinforcement
- 20mm Ø min. pitch Transverse Reinforcement
- Steel Ratio is 2%

	EQX									
PI	ER NO.:	1		DIS	PLACEME	NT				
Node	Load	DX (m)	DY (m)	DZ (m)	RX (rad)	RY (rad)	RZ (rad)			
1522	EQ1X(max)	0.062723	0.049509	0.000063	0.00514	0.006364	0.000214			
1522	EQ2X(max)	0.063659	0.047876	0.000044	0.005797	0.006431	0.000114			
1522	EQ3X(max)	0.061709	0.04961	0.000045	0.005844	0.006242	0.000228			
1522	EQ4X(max)	0.044695	0.060541	0.000034	0.004811	0.004539	0.000148			
1522	EQ5X(max)	0.065121	0.041848	0.000058	0.006364	0.006576	0.000162			
1522	EQ6X(max)	0.040037	0.056396	0.000037	0.005385	0.004044	0.00016			
1522	EQ7X(max)	0.07023	0.05153	0.000061	0.005675	0.007126	0.000248			
MEAN:		0.05831057	0.05104429	4.8857E-05	0.00557371	0.00590314	0.000182			
			Ε	QX						
PI	ER NO.:	2		DIS	PLACEME	NT				
Node	Load	DX (m)	DY (m)	DZ (m)	RX (rad)	RY (rad)	RZ (rad)			
1546	EQ1X(max)	0.062724	0.049514	0.000058	0.00514	0.006364	0.00022			
1546	EQ2X(max)	0.063665	0.047882	0.000037	0.005797	0.006432	0.000284			
1546	EQ3X(max)	0.061734	0.049618	0.000053	0.005845	0.006245	0.000188			
1546	EQ4X(max)	0.044718	0.060545	0.000051	0.004811	0.004541	0.000194			
1546	EQ5X(max)	0.065132	0.041853	0.00006	0.006364	0.006577	0.000208			
1546	EQ6X(max)	0.040046	0.0564	0.000033	0.005385	0.004045	0.000236			
1546	EQ7X(max)	0.070231	0.051534	0.00007	0.005675	0.007126	0.000175			
Ι	MEAN:	0.05832143	0.05104943	5.1714E-05	0.00557386	0.00590429	0.000215			
MAX.		0.05832143	0.05104943	5.1714E-05	0.00557386	0.00590429	0.000215			

Table 9.6-1 Pier Displacement Response

The effect of P-Delta to the column is not critical due to small displacement.

- Verificatio	on of "P-⊿ re	equirement'						
4*⊿*Pu=	16,278	<	23,412	(=ф*Mn)	(OK)			
in which:]	P-DELTA R	EQ. SATISFIE	D		
⊿=	12*Rd*⊿e		⊿: Displace	ment of the	point of contrat	flexure in the o	column or pier	
=	0.70	(m)	relative t	o the point of	of fixity for the	foundation		
Rd=	(1-1/R)*1.25	*Ts/T+1/R (if T<1.25*T	s)				
=	1.00							
Rd=	1.0	(if T≧1.25*	Ts)					
⊿e=	0.058	(m)	⊿e: Displac	ement calcul	ated from elasti	c seismic anal	ysis	
T=	2.10	>	0.790	(=1.25*Ts)	T: Period of fu	ndamental mo	de of vibration	(sec.)
Ts=	0.632		Ts: Corner	period speci	fied in BSDS A	rticle 3.6.2 (=	S _{D1} /S _{DS}) (sec.)	
R=	1.0	R: R-factor						
Pu=	5,847	(kN)	Pu: Axial load on column or pier (dead load from the superstructure)					
ф=	0.9	φ: Flexural r	resistance factor for column					
Mn=	26,014	(kN*m)	Mn: Nomin	al flexural st	rength of colum	m		

EQX									
PIER	NO.:	1							
Elem	Load	Part	Shear-y (kN)	Shear-z (kN)	Torsion (kN-m)	Moment-y (kN-m)	Moment-z (kN-m)		
3336	EQ1X(max)	J[1558]	458.63	641.86	280.01	22410.31	17902.17		
3336	EQ2X(max)	J[1558]	619.22	284.73	150.79	22762.04	17332.95		
3336	EQ3X(max)	J[1558]	627.35	603.04	298.28	22256.66	17150.27		
3336	EQ4X(max)	J[1558]	226	400.32	195.15	17286.44	20915.49		
3336	EQ5X(max)	J[1558]	749.11	685.9	212.64	23209.03	15581.21		
3336	EQ6X(max)	J[1558]	312.66	445.16	210.55	16072.82	19041.83		
3336	EQ7X(max)	J[1558]	658.23	352.23	324.98	24512.79	18434.06		
	MEAN:		521.6	487.605714	238.914286	21215.72714	18051.14		
EQX									
PIER	NO.:	2							
Elem	Load	Part	Shear-y (kN)	Shear-z (kN)	Torsion (kN-m)	Moment-y (kN-m)	Moment-z (kN-m)		
3348	EQ1X(max)	J[1559]	455.99	657.06	283.72	22210.52	17904.9		
3348	EQ2X(max)	J[1559]	619.52	300.13	366.66	22563.75	17336.08		
3348	EQ3X(max)	J[1559]	627.66	617.28	242.63	22061.14	17154.56		
3348	EQ4X(max)	J[1559]	226.49	414.94	250.12	17092.46	20917.7		
3348	EQ5X(max)	J[1559]	748.32	701.5	267.81	23010.42	15581.56		
3348	EQ6X(max)	J[1559]	312.67	460.82	305.2	15875.92	19046.18		
3348	EQ7X(max)	J[1559]	657.14	368.45	225.26	24312.2	18431.96		
	MEAN:		521.112857	502.882857	277.342857	21018.05857	18053.27714		
MAX	FORCES		521.6	502 882857	277 342857	21215 72714	18053 27714		

Table 9.6-2 Pier Design Forces

9.6.5 Verification of the bearing reaction force to the abutment

In common practice, the abutment is not design to carry the effect seismic lateral force coming from the bridge specially for continuous bridge like in this example. But since the bearing shear force will be transmitted to the abutment during event, the capacity of the abutment to resist such additional lateral force may be checked.

- Max. Bearing Shear forces at the abutment

Rx = 162 kN (each bearing)

- Total bearing reaction, Rxi = 162*4=648 kN < 7075 kN
- Abutment height = 7.5 m
- Moment Produced at the bottom, $M_T = 648*7.5 = 4860$ kN-m < 31,386 kN-m

- From Error! Reference source not found. showing that the capacity of the abutment is big enough to carry those additional loads.
- Abutment still adequate.

Figure 9.6-4 Abutment Design

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

9.7 Conclusion

The final design requirements of High Damping Rubber Bearing are summarized below. Checking of all design requirements with the manufacturer is necessary.

Table 9.6-3 Bearing Design Summary								
HIGH DAMPING RUBBER BEARING (HDR)								
Bearing Location	Abutment							
Shape of HDR bearing	Rectangle							
Effective Dimension of HDR (a, b)	425 x 425 mm							
Overall Dimension (l, w) inc. cover	450 x 450 mm							
No. of Rubber Layers	12 pcs.							
Thickness of Rubber layers, te	12 mm							
Total Rubber Thickness, Σ te	179.2							
Thickness of internal steel Plate, ts	3.2 mm (SS490)							
Shear Modulus of rubber, G	1.2 Mpa							
Elongation at Break	550%							

Bearing Location	Pier
Shape of HDR bearing	Rectangle
Effective Dimension of HDR (a, b)	625 x 625 mm
Overall Dimension (l, w) incl. cover	650 x 650 mm
No. of Rubber Layers	12 pcs.
Thickness of Rubber layers, te	12 mm
Total Rubber Thickness, Σte	179.2
Thickness of internal steel Plate, ts	3.2 mm (SS490)
Shear Modulus of rubber, G	1.2 Mpa
Elongation at Break	550%

Remarks:

The main benefits of Seismic Isolation for bridges, either new or existing are:

- 1. The addition of flexibility to the system increases the fundamental period, which, for short period structures, will decrease the design forces. However, for long period structures, or ground motions with unusual frequency content, this effect may be negligible, and in extreme cases, design forces may even be higher.
- 2. Although increase in flexibility can lead to larger displacements, inelastic deformation are confined to the bearing, allowing elastic design of the remaining member of the structure. Bearings are relatively easy to maintain, and if necessary, replace, compared to structural elements.
- 3. Significant seismic energy may be dissipated in the isolators, by hysteretic damping in its components. This has the effect of further decreasing the shear forces and limiting the maximum displacement demand on the bearing.
- 4. The shear forces transmitted to the piers are limited by the amount of force that can be transmitted across the bearing, which allows the isolation device to act as a fuse for the structure.

Limitation:

With respect to the 3 benefits of isolation, HDR bearings provide an efficient source of energy dissipation and at moderate displacement levels (like in the example that was presented), satisfy the benefit 1, 2 and 3. However, because the maximum (ultimate) shear force is not well defined (as explained in Clause 8.5 of RBSIDG) the device does not provide an effective fuse across the isolated interface, violating benefit 4. Because of this, at high (ultimate) strain it may not be possible to confine inelastic deformation to the isolator, and piers may experience inelastic demand. The consideration of the interaction between bearing deformation and inelastic pier may be necessary. The more explicit modeling of Pier and more sophisticated analysis may be required in such cases.

References:

AASHTO. 2011. *Guide Specifications for LRFD Seismic Bridge Design* (2nd Edition), American Association of State Highway and Transportation Officials, Washington, DC.

AASHTO. 2014, "Guide Specifications for Seismic Isolation Design". American Association of State Highway and Transportation Officials: Washington, DC, 2014.

Charalampakis, A. F 2010, "*Parameters Of Bouc-Wen Hysteretic Model Revisited*", 9th HSTAM International Congress on Mechanics, Limasol, Cyprus.

Chopra, A. [2000] "*Dynamics of Structures: Theory and Applications to Earthquake Engineering*", 2nd ed., Prentice Hall, Inc. Upper Saddle River, New Jersey.

DPWH. 2013 "*Bridge Seismic Design Specification, BSDS*" (1st Edition), Department of Public Works and Highways, Manila.

Huang, W.-H., G.L. Fenves, A.S. Whittaker, and S.A. Mahin. 2000. "Characterization of seismic isolation bearings for bridges from bidirectional testing", *Proceedings*, 12th World Conference on *Earthquake Engineering*, Auckland, New Zealand, January.

Hwang, J.S, Wu, J.D, Pan, T. C and Yang, G. 2002 "A mathematical hysteretic model for elastomeric isolation bearings" Earthquake Engineering and Structural Dynamics, 771-789.

Mata, P, Borosche, R, Barbat, A.H, Oller, S. 2007 "*High Damping Rubber Model for Energy Dissipating devices*" Journal of Earthquake Engineering, London, UK

MIDAS.2018 "Technical Manual", MIDAS IT

DPWH. 2018 "*Highway Bridge Seismic Isolation Design Specification*" (1st Edition), Department of Public Works and Highways

Wen, Y. K. [1976] "Method for random vibration of hysteretic systems," Journal of the Engineering Mechanics Division. ASCE, 249–263.

Intentionally Blank

CHAPTER 10: COMPARISON BETWEEN SEISMIC RESISTANCE DESIGN AND SEISMIC ISOLATION DESIGN

Chapter 10 Comparison between Seismic Resistance Design and Seismic Isolation Design

10.1 Seismic Resistant Design and Seismic Isolated Design

Over the past few decades, earthquake resistant design of bridge has been largely based on a ductility design concept worldwide. Looking at AASHTO and BSDS specifically, the design philosophy evolved around the intensity of the earthquake: moderate earthquake (Level 1) or Large-scale major earthquake level 2). Seismic performance of bridge according to the design level of earthquake are based on its operational classification.

The acceptable performance of bridges for the traditional force-based seismic design approach is to absorb and dissipate energy by the formulation of plastic hinges in a stable manner to prevent collapse during an earthquake. Specially detailed plastic hinge regions of the supporting ductile columns are capable of absorbing energy through many cycles of the dynamic response of the earthquake. Plastic hinge regions of concentrated damage have been repaired or replaced after earthquakes. The rationale of allowing damage as long as "life safety" is preserved is for economic considerations. The conventional seismic resistant design of structures has been performed under the concept that the structures are designed so that the resistance is greater than the assumed seismic force.

On the other hand, the seismic isolation design is based on the concept of isolating or escaping from seismic force rather than "resisting." Seismic Isolation can be used to avoid having damage to bridge structures and may be achieved at lower initial construction cost. The design of Seismic isolated bridged was explained explicitly in **Chapter 9**.

10.2 Comparison of a Conventional and Seismically Isolated Bridge

The primary objective of applying seismic isolation is to reduce the force that is being generated in the bridge pier and other members by increasing the natural period of the structure and the absorbing energy by means of high damping. In this section, the comparison between the two design techniques was explained.

10.2.1 Bridge Analysis Model

Same configuration of site, also the same analytical and loading model were used in this study. However, the boundary condition for bearings are different. Boundary conditions for the bearing of seismic resistant bridge model are based on the conventional bearing model (free at the abutment and fixed at Pier) as shown in **Figure 10.2-1**

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding) Detailed modeling procedure for conventional bridge was explained in Chapter 5.0 of the New BSDS Design Guide Manual 1st Edition. Another consideration in the analysis model of earthquake resistance bridge is the consideration of non-linear effects which decrease stiffness. BSDS recommend the use of cracked section for the member which plastic hinging is anticipated equal to one half of the gross moment of inertia.

The dynamic spring for pile foundation are also the same for two modeling. The used of simplified or lumped spring pile foundation model was adopted. Loadings for both static and dynamic are also the same.

10.2.2 Analysis

Dynamic analysis using Elastic Time history by modal analysis was performed in the analysis of seismic resistant bridge model as explained also in Chapter 5 of BSDS Design Guide Manual as well as for the analysis of Isolated bridge model in Chapter 9 of this Guideline.

10.3 Comparison of Results

10.3.1 Comparison of Fundamental Periods of Bridge

- Conventional Bridge

1st Mode Natural Period, Tn = 1.15 secs.

2nd Mode

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Natural Period, Tn = 0.80 sec.

Figure 10.3-1 Fundamental Period of Conventional Model Bridge

The fundamental period of isolated bridge was shown in Chapter 9. Summary of fundamental periods of two different bridge model also shown in **Table 10.3-1**.

Dridge Medel	Period, Tn (sec)	Period, Tn (sec)
Bridge Model	1st Mode	2nd Mode
Conventional Bridge	1.15	0.8
Isolated Bridge	2.13	1

Table	10.3-1	Fundamental	Period	of Bridges	Model
				01 2 1 0 8 0 0	

Comparing the fundamental period of structure, noticed that the dominant period of isolated bridge was almost double compare to the others. This is due to bearing isolator is flexible enough so that the cycle of bridge excitation was lengthen, that is why the applicability of isolator also limited to stiff structures and for the bridge that was located where the soil is hard enough as explained in BSDS Section 8.1.

10.3.2 Comparison of Superstructure Displacement

Figure 10.3-2 Displacement History of Superstructure of Two Different Model

The difference of maximum displacement response of superstructure taken as the mean of the maximum response due to seven (7) pairs of input spectrally matched ground motion as shown in **Figure 9.2-2** is small at this case, however, the damping effect due to damping properties of rubber was obvious in black line. Also, the increase in period due to isolator was definitely obvious. The design displacement for superstructure of both models as shown in **Table 10.3-2**.

Superstructure						
Dridge Medel	Displacement, Dx	Displacement, Dx				
bridge Model	(mm)	(mm)				
Conventional Bridge	176	176				
Isolated Bridge	188	188				

Table 10.3-2 Design Displacement of Superstructure

10.3.3 Comparison of Top of Pier Displacement

Unlike the conventional design bridge that the bearing is fixed, the displacement of the top of pier is equal to the displacement of superstructure due to fixity of bearing, in the case of isolated bridge is different as shown in Error! Reference source not found.. The displacement of pier top is small in case of isolated bridge, this is due to the effect of HDR isolator. The isolation physically uncoupled a bridge superstructure from the horizontal components of earthquake ground motion, leading to a substantial reduction in the forces generated by an earthquake. Also, the energy produced by an earthquake was dissipated by the hysteretic property of high damping rubber bearing.

Figure 10.3-3 Displacement History of Pier Top of Two Different Model

The comparison of the design displacement at the top of pier as shown in **Table 10.3-3**. Those value were taken from the mean of maximum response due to seven input ground motion.

Top of	Pier 1	Pier 2
Bridge Model	Displacement, Dx	Displacement, Dx
Driuge Mouel	(mm)	(mm)
Conventional		
Bridge	162	162
Isolated Bridge	58	58

Table 10.3-3 Design Displacement at Top of Pier

10.3.4 Comparison of Forces at Pier

The response of the pier for isolated bridge particularly the forces extracted by the pier at the bottom was illustrated in Chapter 9 of this guideline. Comparison of the difference in the design forces between these two different models that were used for the design of section of column are shown in **Table 10.3-4**.

Notice the difference of the design forces, this is mainly because of isolation as explained in Chapter 9. However, for the design of conventional bridge, ductility factor which may reduce the design elastic force at the base of column where plastic hinging was anticipated was required. The elastic force in **Table 10.3-4** for conventional bridge was reduced by response modification factor or a certain ductility factor according to BSDS Section 3.8 Table 3.8.1-1, and for essential bridge (OC2) the ductility factor to be used is 2.0. Therefore, for the design of column of conventional bridges the forces to be used in this example was divided by this factor and the final results as shown in **Table 10.3-5**.

PIER NO.:	1	Mean of max. Response due to 7 Pairs of EQ				
Bridge Model		Shear-y (kN)	Shear-z (kN)	Torsion (kN-m)	Moment- y (kN-m)	Moment- z (kN-m)
Convention	5051.97	6988.17	3932.19	93490.43	62638.72	
Seismic Isola	521.6	487.6	238.91	21215.72	18051.14	
PIER NO.:	2	Me	an of max. F	Response du	e to 7 Pairs o	f EQ
Bridge Model		Shear-y (kN)	Shear-z (kN)	Torsion (kN-m)	Moment- y (kN-m)	Moment- z (kN-m)
Convention	5101.06	6952.14	4268.75	92994.51	63186.79	
Seismic Isolated		521.11	502.88	277.34	21018.06	18053.28

 Table 10.3-4 Comparison of Design Forces at Column Base

Table 10.3-5 Modified Design Forces at Column Base

	Mean of max. Response due to 7 Pairs of EQ				
Bridge Model	Shear-y (kN)	Shear-z (kN)	Torsion (kN-m)	Moment- y (kN-m)	Moment- z (kN-m)
Conventional Pier 1	2525.99	3494.09	1966.09	46745.22	31319.36
Conventional Pier 2	2550.53 3476.07 2134.38 46497.25 3159				

This modification factor or ductility factor is not necessary for isolated bridge, unless the ductility at pier was considered in the design as explained in Chapter 9 of this guideline.

Using the above design forces for conventional bridge, the required section capacity was illustrated in **Figure 10.3-4**. Followed the column design procedure, then, the required Design for the column section for conventional bridge should be as follows:

- Required Diameter of Column, D = 2700 mm
- Required No. of Vertical Rebars, N = 120 pcs.
- Required Steel ratio, $\rho = 1.7\%$
- Diameter of ties, $dt = 20 \text{ mm}\emptyset$ (Bundled in two)
- Minimum Pitch, s = 120 mm
- Verification of "P-⊿ requirement"

 $4* \Delta * Pu = 45,466 < 51,727 (= \phi * Mn)$ (OK)

in which: P-DELTA REQ. SATISFIED

- $\Delta = 12^{*}$ Rd* Δe Δ : Displacement of the point of contra-flexure in the column or pier.
 - = 1.94 (m) relative to the point of fixity for the foundation
- Rd = (1-1/R) * 1.25*Ts/T + 1/R (if T<1.25*Ts)
 - = 1.00

Rd	=	1.0	(if T≧1.2	5*Ts)
⊿e	=	0.162	(m)	⊿e: Displacement calculated from elastic seismic analysis
Т	=	1.15 >	0.790 (=1.2	25*Ts) T: Period of fundamental mode of vibration (sec.)
Ts	=	0.632		Ts: Corner period specified in BSDS Article 3.6.2 (=SD1/SDS) (sec.)
R	=	2.0	R: R-facto)r
Pd	=	5,847	(kN)	PD: Axial load on column or pier (dead load from the superstructure)
Φ	=	0.9		φ: Flexural resistance factor for column
Mn	=	57,475	(kN*m)	Mn: Nominal flexural strength of column

By checking the P-Delta effect it is clear that the design section has satisfied. The design of section for isolated bridge was already explained in Chapter 9.

10.4 Conclusion

Summary of the results comparing the two bridges model was illustrated in Table 10.4-1.

Table 10.4-1	Comparison	Table of	Conventional	and Seismic	Isolated Bridge
--------------	------------	----------	--------------	-------------	------------------------

	PIER BEARING TYPE		
	CONVENTIONAL	HIGH DAMP RUBBER	
Shape of Bearing	N/A	RECTANGLE	
Dimension of Bearing for Abutment (mm)	N/A	450 X 450	
Dimension of Bearing for Piers (mm)	N/A	650 X 650	
Thickness of Bearing (mm)	N/A	179.2	
Max. Displacement of Superstructure (mm)	176	204	
Max. Displacement of Pier top (m)	162	58	
Natural Period of Structure, Tn (secs)	1.15	2.13	
Moment at Pier Bottom (kN-m)	93,490.00	21,215.00	
Shear Force at Pier Bottom (kN)	3495	502	
Size of Bridge Pier Required (m)	2.7	2.0	
Percentage of Rebar Required (%)	1.7	2	

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

In this table, the difference in response between these two different bridges model was obvious. Another difference was not illustrated but already explained in Chapter 9.

With the same earthquake loading the performance level of these two models are also different. For conventional design bridge, the ductility of bridge pier is expected at a certain location meaning the plastic hinging is anticipated and repairable damages (no collapse) are allowed during earthquake.

In contrary, for the Seismic Isolated Design bridge, because a seismic isolation bearing can absorb the energy, this reduces the forces transmitted to the substructure columns, piers, and foundations. Also, the earthquake energy is absorbed by heat in the isolation bearing that provides protection for the substructure, therefore, by protecting the structure it also assures the elastic response.

The effectivity of seismic isolation for bridges is not only for improving the structural performance but of course another factor is the cost effectivity. By reducing the amount of forces attracted to Pier, the section also reduced including the foundation and the cost also reduced. Another factor is the performance of bridge during and after earthquake. The isolated bridge requires only minimal or no damage after earthquake due to its seismic performance level, however, the conventional bridge allowed structural damage but no collapsed. The higher cost of repair must be expected on that performance level. Cost implication is another consideration of choosing or specifying the performance level of bridge.

References:

AASHTO. 2014, "*Guide Specifications for Seismic Isolation Design*". American Association of State Highway and Transportation Officials: Washington, DC, 2014.

DPWH. 2013 "Bridge Seismic Design Specification, BSDS" (1st Edition), Department of Public Works and Highways, Manila.

DPWH. 2018 "*Highway Bridge Seismic Isolation Design Specification*" (1st Edition), Department of Public Works and Highways

Intentionally Blank

CHAPTER 11: GAP BEARING ADJACENT GIRDERS AND SUBSTRUCTURES

Chapter 11 Gap Bearing Adjacent Girders and Substructure

11.1 Gap between adjacent girder and Substructures

 $S_B = u_s + L_A$ (between a superstructure and an abutment , or a superstructure and a truncated section of a pier head)

c_B u_s+L_A (between two adjacent girder)

L_A: marginal value. 15mm in General.

- us: Maximum relative displacement due to Level 1 or Level 2 Earthquake.
- C_B: Modification factor depending on the difference of natural periods of adjacent superstructure as shown in **Table 11.1-1**

Table 11.1-1 Joint Gap	Width Modification	Factor for Natural Period
Differen	ce between Adjacent	t Girders c _B

Ratio of Natural period Difference of adjacent girders $\Delta T/T_1$	CB
$0 \leq \Delta T / T_I < 0.1$	1
$0.1 \leq \Delta T / T_I < 0.8$	$\sqrt{2}$
$0.8 \leq \Delta T / T_I \leq 1.0$	1

Notes: $\Delta T = T_1 - T_2$, and T_1 and T_2 represent the natural periods of two adjacent girders, respectively. However, T_1 is assumed equal to or greater than T_2 .

The amount of gap between adjacent girder and substructure is classified into two cases.

(1) Ordinary Bridge

This amount is determined as that collision will not occur for level 1 Earthquake Ground Motion, if verification confirms that the collision will not affect the seismic performance of the bridge when subjected to Level 2 Earthquake Ground Motion.

(2) Seismically – Isolated Bridge

The amount of gap is determined to ensure the expected behavior of seismic isolation. As for this case, calculation example is shown in this Design Guideline 8.2.

CHAPTER 12: EXAMINATION OF LIQUEFACTION

Chapter 12 Examination of Liquefaction

12.1 Liquefaction

12.1.1 Assessment of seismically unstable soil layer

Assessment of seismically unstable soil layer is defined as Table 12.1-1.

Assesment of Soil Layer	Condition of Decision	Calculation Treatment
Extremely Soft layer	For a clayey or silt soil within 3 m from ground surface, having a compressive strength of 20kPa(kN/m2)(0.02N/mm2) or less obtained by unconfined compression test or an in-situ test.	Geotechnical parameters shall be zero. Acts as overburden.
Liquefiable Layer Liquefaction Assessment	 For the alluvial sandy layer having all of the following three conditions, liquefaction assessment shall be conducted. 1) Saturated soil layer with depth less than 20m below the ground surface and having ground water level higher than 10m below the ground surface. 2) Soil layer containing a fine content(FC) of 35% or less, or soil layer having plasticity index, IPI, less than 15, even if FC is larger than 35%. 3) Soil layer having a mean particle size(D₅₀)of less than 10mm and a particle size at 10% passing (D₁₀)(on the grading curve is less than 1mm. 	Reduce geotechnical parameter for seismic design If Reduction factor D _E =0 and geotechnical parameter is zero, it acts as overburden.

Table 12.1-1 Assessment of soil layer

12.1.2 Assessment of Liquefaction

In BSDS, following provisions are described.

For the soil layer requiring liquefaction assessment according to the provisions specified in Item (1) above, the liquefaction resistance factor F_L , shall be calculated by Equation 6.2.3-1. When the result turns out to be less than 1.0, the layer shall be regarded as a soil layer having liquefaction potential.

$F_L = R / L$		
$R = c_w R_L$		(6.2.3-2)
$L = r_d k_{hgL} \sigma_v / \sigma'_v$		(6.2.3-3)
$r_d = 1.0 - 0.015x$		(6.2.3-4)
$k_{hgL} = F_{pga} PGA$		
$\sigma_v = \gamma_{tl} h_w + \gamma_{t2} (x - t)$	h _w)	
$\sigma'_{v} = \gamma_{tl}h_{w} + \gamma'_{t2}(x)$	<i>:-h</i> _w)	

	ſ	1.0	$(R_L \le 0.1)$		
	$c_w \neq$	$3.3R_L + 1$	0.67	$(0.1 < R_L \le 0.4)$	(6.2.3-8)
	l	2.0	$(0.4 < R_L)$		
where:					
F_L	:	Liquefact	ion resistance fac	ctor.	
R	:	Dynamic	shear strength ra	tio.	
L	:	Seismic s	hear stress ratio.		
${\cal C}_W$:	Modificat	tion factor on ear	thquake ground motion.	
R_L	:	Cyclic tria	axial shear stress	ratio to be obtained from	Equation 6.2.3-9 in Item
		(3) below			
r_d	:	Reduction	n factor of seismi	c shear stress ratio, in ter	ms of depth.
k_{hgL}	:	Design ho	orizontal seismic	coefficient at the ground	surface for Level 2 EGM.
F_{pga}	:	Site coeff	icient for peak g	round acceleration specifi	ed in Article 3.5.3.
PGA	:	Peak grou	and acceleration	coefficient on rock, as giv	en in Article 3.6.
σ_v	:	Total over	rburden pressure	, (kN/m^2) .	
σ'_v	:	Effective	overburden press	sure, (kN/m^2) .	
x	:	Depth fro	m the ground sur	rface, (m).	
γ_{t1}	:	Unit weig	tht of soil above	the ground water level, (k	N/m ³).
γ_{t2}	:	Unit weig	tht of soil below	the ground water level, (k	N/m^3).
γ'_{t2}	:	Effective	unit weight of sc	oil below the ground water	r level, (kN/m^3).
h_w	:	Depth of	the ground water	level, (m).	
Cyclic	triaxia	ıl shear stre	ss ratio		
Cyclic	triaxia	l shear stre	ss ratio R_L shall b	be calculated by Equation	6.2.3-9.
	ſ	$0.0882\sqrt{N}$	(1.7		
R	$\mathbf{R}_L = \left\{ \mathbf{C} \right\}$	$0.0882\sqrt{N_a}$	$\overline{/1.7}$ +1.6x10 ⁻⁶ •	$(N_a - 14)^{4.5}$ $(N_a < 14)$	

where:				
(For Sat	ndy So	oil)		
Na	$= c_1 N$	$V_1 + c_2 \qquad \dots$		(6.2.3-10)
N_l	= 170	$N/(\Box'_v+70)$		(6.2.3-11)
	ſ	1.0 ($(0\% \le FC < 10\%)$	
C_{I}	= {	(FC + 40) / 50	$(10\% \le FC < 60\%)$	(6.2.3-12)
	Ĺ	<i>FC</i> / 20 - 1 ($(60\% \le FC)$	
	ſ	0 ($(0\% \le FC < 10\%)$	
<i>C</i> ₂	=	(FC-10) / 18	$(10\% \le FC)$	(6.2.3-13)
(For G	ravell	y Soil)		
Na	₁ = {1	$-0.36 \log_{10}(D_{50}/2)$	N ₁	(6.2.3-14)
R_L	:	Cyclic triaxial shea	ar stress ratio.	
N	:	N-value obtained f	rom the standard penetration test.	
N_{I}	:	Equivalent N value	e corresponding to effective overburden pressure	of 100
		kN/m^2 .		
Na	:	Modified N value t	taking into account the effects of grain size.	
<i>C</i> ₁ , <i>C</i> ₂	:	Modification factor	rs of N value on fine content.	
FC	:	Fine content, (%) (percentage by mass of fine soil passing through the	e 75⊡m
		mesn).		
D ₅₀	:	Mean grain dian	neter, (mm).	

12.1.3 Calculation Example

(1) Examination of liquefaction potential

Next Tables are examples of Lambingan Bridge case.

BH-4 FOR ABUTMENT A1										
Summary Assessment of Liquefaction Potential										
GL	Soil Layers	N-Value	Ground Water Level	FC	PI	D50	D10	Assessment		
m	-	by SPT	m	%	-	mm	mm	-		
-1.4	Sandy	10	1.03	0	0	0	0.00	0		
-2.4	Sandy	13	1.03	0	0	0	0.00	0		
-3.4	Sandy	20	1.03	10	0	0.55	0.08	0		
-4.9	Sandy	4	1.03	0	0	0	0.00	0		
-6.4	Sandy	17	1.03	7	0	0.52	0.13	0		
-7.9	Sandy	2	1.03	52	0	0.055	0.00	0		
-9.4	Clayey	4	1.03	90	44	0.1	0.00			
-10.9	Clayey	5	1.03	62	41	0.1	0.00			
-12.4	Clayey	3	1.03	86	45	0.1	0.00			
-13.9	Clayey	3	1.03	85	39	0.1	0.00			
-15.4	Clayey	5	1.03	88	47	0.1	0.00			
-16.9	Clayey	13	1.03	77	74	0.1	0.00			
-18.4	Sandy	25	1.03	16	0	1	0.10	0		
-19.9	Sandy	50	1.03	100	50	100	10.00			
-21.4	Sandy	50	1.03	100	50	100	10.00			
-22.9	Sandy	50	1.03	100	50	100	10.00			
-24.4	Sandy	50	1.03	100	50	100	10.00			
-25.9	Sandy	50	1.03	100	50	100	10.00			
-27.4	Sandy	50	1.03	100	50	100	10.00			

BH -1 FOR ABUTMENT A2										
	Summary Assessment of Liquefaction Potential									
GL	Soil Layers	N-Value	Ground Water Level	FC	PI	D50	D10	Assessment		
m	-	by SPT	m	%	-	mm	mm	-		
1.41	Sandy	2	1.03	25	0	0.52	0.00	о		
1.03	Sandy	2	1.03	25	0	0.52	0.00	0		
0.41	Sandy	2	1.03	0	0	0	0.00	0		

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

-0.59	Clayey	2	1.03	62	10	0.1	0.00	0
-3.59	Clayey	5	1.03	12	0	0.8	0.05	0
-5.09	Clayey	13	1.03	52	0	0.05	0.00	0
-6.59	Clayey	24	1.03	75	0	0.1	0.00	0
-8.09	Clayey	3	1.03	70	20	0.1	0.00	
-11.09	Clayey	4	1.03	83	29	0.1	0.00	
-12.59	Clayey	3	1.03	78	39	0.1	0.00	
-15.59	Sandy	50	1.03	16	0	0.8	0.04	0
-15.74	Sandy	50	1.03	100	50	100	10.00	
-17.09	Sandy	50	1.03	100	50	100	10.00	
-18.59	Sandy	50	1.03	100	50	100	10.00	
-20.09	Sandy	50	1.03	100	50	100	10.00	
-21.59	Sandy	50	1.03	100	50	100	10.00	

Painted layers have a potential of liquefaction.

(2) Calculation of Liquefaction Resistance Factor F_L

 Table 12.1-3 Calculation of FL

	Calculation for FL (A1)							Redu	ction Fa	actor DE
Denth	NT1	- 1	- 2	N.	р	т	EI	R	FL	DE
Depth	IN I	cl	c2	Na	K	L	FL	Ave.	Ave.	DE
1.00	22.911	1.000	0.000	22.911	0.650	1.740	0.374			
2.00	28.189	1.000	0.000	28.189	1.207	1.714	0.704	3.934	2.324	1.00
3.00	41.162	1.000	0.000	41.162	9.946	1.687	5.895			
4.50	7.281	1.000	0.000	7.281	0.232	1.426	0.163	0.537	0.408 0.6	
6.00	27.735	1.000	0.000	27.735	1.135	1.312	0.865			0.67
7.50	2.957	1.840	2.333	7.773	0.244	1.239	0.197			
9.00	5.613	3.500	4.444	24.090						
10.50	6.677	2.100	2.889	16.911						
12.00	3.822	3.300	4.222	16.834						
13.50	3.653	3.250	4.167	16.040						
15.00	5.832	3.400	4.333	24.162						
16.50	14.549	2.850	3.722	45.187						
18.00	25.883	1.120	0.333	29.322	1.423	1.111	1.280	1.423	1.280	1.00
19.50	48.159	4.000	5.000	18.703						

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)
21.00	44.808	4.000	5.000	17.402			
22.50	41.893	4.000	5.000	16.270			
24.00	39.334	4.000	5.000	15.276			
25.50	37.069	4.000	5.000	14.397			
27.00	35.052	4.000	5.000	13.613			

Calculation for FL(A2)								Reduction Factor DE		
Donth N1	N1	-1	~?	No	р	т	EI	R	FL	DE
Depth	INI	CI	C2	INa	K	L	ΓL	Ave.	Ave.	
1.00	4.048	1.300	0.833	6.095	0.204	0.522	0.391		0.329	0.00
1.38	3.807	1.300	0.833	5.782	0.196	0.519	0.378	0.181		
2.00	3.701	1.000	0.000	3.701	0.143	0.657	0.218			
3.00	3.543	2.100	2.889	10.329	0.302	0.816	0.370	0.302	0.370	0.67
6.00	7.851	1.040	0.111	8.276	0.255	1.053	0.243	0.255	0.243	0.00
7.50	19.316	1.840	2.333	37.875	5.913	1.106	5.348	(02.210	601.818	1.00
9.00	33.842	2.750	3.611	96.675	1360.708	1.136	1198.287	683.310		
10.50	4.025	2.500	3.333	13.396						
13.50	4.892	3.150	4.056	19.464						
15.00	3.513	2.900	3.778	13.966						
18.00	50.971	1.120	0.333	58.273	82.836	1.038	79.791	41.418	79.791	1.00
18.15	50.625	4.000	5.000	19.661						
19.50	47.709	4.000	5.000	18.529						
21.00	44.840	4.000	5.000	17.415						
22.50	42.297	4.000	5.000	16.427						
24.00	40.026	4.000	5.000	15.545						

(3) Reduction of Geotechnical Parameters

Reduction factor is determined by shear strength ratio R, Resistance Factor F_L and depth x.

Dance of E	Depth from Ground	Dynamic shear strength ratio R			
Kange of F_L	Surface x (m)	$R \leq 0.3$	0.3 < R		
$E \leq 1/2$	$0 \leq x \leq 10$	0	1/6		
$F_L \ge 1/3$	$10 < x \leq 20$	1/3	1/3		
1/2 - E < 0/2	$0 \leq x \leq 10$	1/3	2/3		
$1/3 \leq F_L \geq 2/3$	$10 < x \leq 20$	2/3	2/3		
$2/2 < E \leq 1$	$0 \leq x \leq 10$	2/3	1		
$2/3 \leq F_L \ge 1$	$10 < x \leq 20$	1	1		

 D_E is applied for all Geo Technical constants.

12.2 Lateral spreading

Example bridge and target pier are shown in Error! Reference source not found.

Figure 12.2-1 Example Bridge

Borehole Log

Figure 12.2-2 Borehole Log

Table 12.2-1 Geological Constants

Soil layer	Thickness	N value	γt	Cohesion	Internal	Modulus of
number	(m)		(KN/m3)	C (KN/m ²)	friction	deformation
					angle(ϕ°)	(KN/m^2)
1 st layer	3.90	7	16.2	0.0	25	19600
2nd layer	3.10	5	16.2	0.0	25	14000
3 rd layer	8.00	4	17.2	0.0	20	12000
4 th layer	11.90	1	16.7	49	0	20000
5 th layer	3.50	4	18.6	6.0	0	40000
6 th layer	2.70	40	17.2	0.0	40	112000
7 th layer	3.80	10	19.1	98	0	28000
8 th layer	2.00	40	19.1	0.0	40	112000
9 th layer	2.60	50	19.6	0.0	40	140000

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

Figure 12.2-3 Analysis Model

(1) Calculation of Lateral Spreading Force

Lateral Spreading Force is calculated with 8.3.2 JRA Vol 5, 2012.

Loading width

Pier 14.0m Footing 14.5m Pile foundation 13.5m

Layer	Thickness	Unit	Resultant	Structure	Load	Lateral
name	(m) load(KN/m ²		force(KN/m)	name	width	spreading
						force(KN)
	1.5	0.00	37	Column	14.0	518
1 st layer		49.5				
	2.5	49.5	227	Footing	14.5	3292
		132.0				
2 nd layer	3.1	132.0	564	Pile	13.5	7614
		232.1				
3 rd layer	8.0	35.0	448			6048
		77.0				

Table 12.2-2 Calculation of Lateral Spreading Force Applying to Pier

Total 17472(KN)

Figure 12.2-4 Lateral Spreading Force applying to Pier

Intentionally Blank

APPENDIX: STRUCTURAL DETAILS

A1. Plastic Hinge Part

Note: The following are the JRA (Japan Road Associations) recommended structural details:

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

A2. Anchorage of Hoops

Consulting Services for the Detailed Design and Tender Assistance of the Metro Manila Priority Bridges Seismic Improvement Project (MMPBSIP) JICA Loan No. PH-P260 (Rebidding)

A3. Standard Reinforcement at the Joint of Column and Beam

Republic of the Philippines Department of Public Works and Highways BSDS DESIGN STANDARD GUIDE MANUAL